Iterative Development

9/27/2012

Motivation

* Last thing you want to do is write critical code
near end of a project
— Induces huge stress on team

— Introduces all kinds of “interesting” bugs that
break working code

* Testing always gets cut in crunch
— Makes problem even worse!

* Planning can help avoid writing critical code in
alpha or beta phases

Wishes versus Reality

* Most games you make are smaller/less than
you originally envisioned
— Design was bigger than implementation

— Or, tested/working implementation bigger than
what made it into game

* That’s ok = expect it
* So, how do we know when a game is “done”?

How Do We Estimate Progress?

Example:

* Jois a programmer

She estimates it will take 10 days to implement Smart Trap
She is 4 days into implementation

Is Smart Trap 40% complete? ... maybe

— We may not see it "snap shut" until day 9

She’s good, = finishes in 8 days total

— Yay, we are ahead!

Later, decide to add functionality to Smart Trap (e.g., trap
large bad guys, too)

— Takes 4 days

Boo, now we’re behind!

What’s the Point?

* Most things get revisited multiple times during
development
— Fix bugs, modify functionality, etc.
— “Refactoring” your code (as in add functionality to

Dragonfly)
* Note, refactoring easier with clear, easy-to-understand code!

— Expect this! Despite your careful planning ...

* So, the "40% done" estimate looks pretty
sketchy...

* Need way to account for time without driving
project into trouble (and into panic)

Incremental Delivery

* Milestones are good things!
— They let us get things “done”

* Milestones can have downside
— If you miss one, people notice, action taken
— Especially management people

* Developer’s view

— Milestones (or plans, in general) are just best guesses for how
implementation will evolve

— Guidelines for when certain things will be ready
* Management’s view

— Schedules are contracts with developers

— Promising certain things at certain times
« Different views cause problems

— Developers: panic, pressure, long hours

— Managers: justification for financial pressure

Milestones (1 of 2)

Despite problems, necessary

— Without milestones, unlikely to get done

* Unrealistic milestones mean work not done on
time, no matter financial importance
— Remember, are best guesses

* Managers need to know estimates of developers
and key makers along the way
— Plan financial/time links accordingly

* External milestones coarser
— Tie to publishers, marketers, etc.

* Internal milestones have finer granularity

— Used by team members

9/27/2012

Milestones (2 of 2)

* Think of development plan as black box
— Managers have specific “interface” to box
* “Give me the latest build”
* “Give me the latest (high-level) schedule”
* Clearly, this is too simplistic/wishful thinking
— Managers just want to know more (and need to,
to do their jobs better)
* But view of development plan as “black box”
helps separate job roles better

There is More than Meets the Eye

¢ For many, “if | can’t see it, it is not important”
— Al takes time to build (and you don’t see it)

— Network code to balance players is an optimization
(and you don’t see it)

Developers receive less “credit” for unseen code
than for things that can be seen

Good managers will probe deeper to see what is
really going on

— Requires technical ability (knowledge)

— (This is also reason Game Designer needs technical
knowledge!)

Iteration

* Make frequent working builds
— “We don’t go home Friday until a working build
checked in”
— Frequency (daily or weekly) depends upon project

* If management asks for latest build, give one
from last week
— Resist desire to show latest-and-greatest
* Won't always be bug free, ready to show

— People will always expect it and leads to unrealistic
expectations

Internal Scheduling

* Give detailed design document
— Make list of all objects (e.g. players, items, NPCs...) that
need to be built
— Mark each as one of:
 Core — base, fundamental functionality
* Required — needed for working, playable game
* Desired — “icing on the cake”, make game special, but not
required
* Endresult:
— List of features sorted by importance

* Note, doing this planning gets easier the more you do!

Internal Scheduling Structure

* Could start from top of milestone list > Work
down and when time runs out, then done
— Produces whole lot of “complete” pieces, but no
whole that works together
— Makes management (and others) nervous since
cannot see it “coming together”
* Better way = since list made in Object-
Oriented (O0) fashion, start building objects!

OO lterative Development —
Object Versions (1 of 2)

9/27/2012

OO Iterative Development —
Object Versions (2 of 2)

* Create a Stub version of each object stub * Some objects (classes) will be simpler
— Complete, but empty // Player.h ; i L.
— Perhaps just print out message class Player { — Fewer iterations (e.g. Position class)

. i i public: .
Basic version Py * Some will be more complex

— Placeholder with some properties present

~ Setattributes, minimal functionality | P08 — More iterations (e.g. WorldManager class)
* Nominal version ’ .
— “Commercial viable” implementation // Player.cpp * Can say have Shlppable game when every
— Most functionality in place #include "Player.h" object at least in Nominal version
— Tested Player::Player(){ } . . “ ”
+ Optimal version Player: :~Player(){ } — Working definition of “good enough
— “State of the art * A complete game is one where all objects are

— All polish present

Nice feature about above development
— Thoroughly tested

plan? Game will “build” even after
Basic version!

at Optimal level

0O Iterative Development — Overall Scheduling - Naive
* But, seems like need to write 3 versions of every object! - -
. L. Feature Null Base Nominal | Optimal
— Yes, but would probably do that anyway with revisions
Core F1 1 13 25 37
* Approach F2 2 14 26 38
— Starting with core, then required, then desired, implement Stub
versions of all objects 7 3 15/ 27/ 39/
— Starting with core, then required, implement Nominal versions - £ 4 1K 21 4¢
— Code is now releasable e : : /{; g’; /Z’;
* Only now start to work on nominal versions of desired = = VD JER 743
* This is breadth-first approach = =] 2] =] aa
— Better than "let's do the cool bits first!" el = 5 21 / 33 5
— Always have buildable game F10 10 22 32 26
— Near-continuous growth F11 11 >3 35 27
— Can easily show refinement F12 2 24 3% 28
— Throughout, better handle on how "complete" game is

Scheduling — Better (single programmer) . .
Scheduling — Better (multiple programmers)
Feature Null Base Nominal | Optimal
Core F1 1 13 22 37 Feature Null Base | Nominal | Optimal
=2 = = 23 38 Core F1 1A 7A 118 19A
F3 3 1y 2/ 39/ F2 1B 78 12A 198
b = 1k 75 ag F3 2A 8A 128 20A
Required F5 5 17 /26 4 F4 28 88 13A 208
F6 6 Ji8 ||/ 27 2 Required F5 3A 9A 138 21A
F7 z / 19 28 /a3 F6 38 9B 14A 218
F8 8 20 29] a4 F7 4A 10A 148 22A
Desired Fo 9 21 &— 32, |/ 45 = 4B OB o 35
F10 10 30 e 46 Desired F9 5A 11A 168 23A
il ul/l 3 34 47 F10 5B 158 17A 238
iz 22 35 35 A8 F11 6A 16A 178 24A
F12 68 18A 188 248
* Note! This is just one example = Alternate could be to finish Core Nominal
before Base Required
* Point is to “zig-zag” to bottom corner, with optimal last

Team Work

* Make sure to use skills of each team member well
* Keep everyone busy

— No waiting, if possible
¢ Communication vital!

— Every programmer should be aware of what others are
doing

— Code reviews (for sharing implementation details as much
as writing solid code)

— Peer-debugging (as needed)

— Joint status meetings (Daily! Even if brief)

— Documentation (documented code, documented
milestones and status, documented bug list)

9/27/2012

Scheduling with Iteration

* Shift:
— FROM: When will it be finished?
— TO: When will it be good enough?
* “Finished” is meaningless, anyway
* Have definition of “good enough” now!
* Bad estimation often comes from top-down dissection

— No accounting for learning curve, code revision, or
integration

* |terative development

— Total time equals sum of the Stub, Base, Nominal, and
Optimal levels

\

/ Consider Saucer Shoot '

¢ Core
— Saucers move
— Player can move ship, fire bullets
« Allows you to refine interface mechanic early!
Required
— Bullets destroy saucers
— Saucers respawn
— Explosions
— Animated Sprites
— Game difficulty progresses and game ends
Desired
— Stars
— Game start screen, game end screen
— Points

% Consider Dragonfly %

* (Note, your development did separate 2a, 2b, 2¢ “mini-projects”)
e Core

— Log file management

— Game loop with timing

— Game objects with updates

¢ Required
— User-input
— User-defined events
— Graphics support

Is “optimal” done for any classes?
Probably not for all — would need all Desired first!
But have Nominal version of classes for all

— Collisions

* Desired

— Animated, colored Sprites

— HUD objects

— Camera control

— Efficient scene management (e.g. for collision detection)

Group Exercise

Split into Project 3 Teams

Make list for your game, with one feature in
each list

— Core

— Required

— Desired

Provide high-level class name(s) associated
with each

