
8/23/2012

1

IMGD 3000

Game Engine Introduction

Introduction

• What are the names of some game engines?

• What, exactly, is a game engine?

• How does it work?

What is a Computer Game?

User Perspective

• A goal (or set of goals)
– Save the Princess (solve puzzles to get sword first)

– Score points (get power ups)

– Finish first (unlock next level)

• A set of rules governing play
– Turn taking, like RPGs

– Reaction to events, like Tetris’ falling blocks

– Legal actions

• Visual and audible content (graphics and sound)

• Control and input techniques
– Button mappings, mouse clicks

– How you provide input to game world

What is a Computer Game?

Computer Perspective

• Set of resources managed to support

entertainment (usually) application

• Graphical rendering

• User interface and input

• Event processing

– Timers, collisions, etc.

• File I/O

• Optional: Networking, AI, Physics, Scripts

Game Code versus Game Engine Code

• Line between game and game engine often
blurry

– E.g. One game, an engine may know how to “draw
and orc”

– E.g. Another game, engine provides rendering and
shading, but “orc-ness” defined entirely in user
code

• No clear separation since “built-in” parts of
game engine are often part of the game

– E.g. sprite or animation, collision detection …

Game Engine Specificity

• Reusable? Often
– But many still make one

game only

• Efficient? Often
– Can tune commonly used

code

• General purpose?
Somewhat
– Can make more than one

game (e.g. mod)

• Often designed with
specific genre in mind

• Some genres with likely
very different engine
support
– Arcade (e.g. Tetris)

– Side-scroller (e.g. Mario)

– 3d isometric (e.g. Diablo)

– 1st person (e.g. CoD)

– MMORPG (e.g Warcraft)

– Turn-based (e.g. Civ)

– Story (e.g. Heavy Rain)

• How do you think each
may differ?

8/23/2012

2

Game Engine Components

• Substrate

– Hardware (PC, Xbox, Ipad
…) and Operating System
(Windows 7, IOS, …)

– Graphics API (OpenGL,
DirectX, Curses)

– Third-party libraries (STL,
Networking)

– Math libraries (trig, linear
algebra)

� Game engine needs these,
and is bound to these but not
engine code

• Core Systems

– Memory allocation

– Engine configuration

– Parsers (for config files)

– Debugging and
performance (unit testing,
profiling, error logging)

– Startup/Shutdown
(initialization and final
state)

Game Engine Components

• Representation of the world

– Game objects

– Possibly oriented, relative

• Timing is very important

– Events are time-based

– Multi-player needs consistency

• Low-level utilities for game engine

– Updating objects, handling resources in/out,
logging, memory management, encryption…

Game Engine Components

• Rendering system (Dragonfly – yes)
– How to display scene

– Lighting, occlusion, textures, camera, viewport …

– Special effects (particles)

• Sound system
– Music and dialog, formats and timing and resources

• Physics
– How objects may move and/or interact

– Object physical states (location, velocity, orientation)

– Bounding volumes and collision detection

• Artificial intelligence
– “Smart” objects, as opponents or NPC

– Low-level utilities, such as pathfinding

Game Engine Components
• Input management

– Map device specific commands (e.g. keystroke or mouse click)
to generic game-specific command (e.g. left)

• Resource management
– 3d models (skeleton, animations), Textures

– Loading, decompression

• Gameplay foundations
– Static world elements

– Dynamic world elements

– Events/messaging

• Online multiplayer
– Authentication and registration

– Game state replication

– Latency compensation (dealing with lag)

Example Core System - Structures

• Basic data structures

– Arrays – fast indexing, fast insertion/deletion at end

– Lists – slow indexing, fast insertion/deletion in middle

– Maps (hash tables) – fast searching and insertion

– (May be provided by standard libraries (e.g. C++ STL))

• System-specific concepts

– System time – converting from OS to game time

– File system – open, close, read/write, directories and

naming

Example Core System – Object System

• Most game engines use objects as foundational
representation
– Convenient abstraction for programmers and

designers

– Fits with OO design and programming

• Objects have base values
– Location, attributes (e.g. size, mass), velocity

• Exact attributes often depend upon genre type!

• Objects know how to react to events
– e.g. time elapsed then explode, hit wall then bounce

• Startup: Populate world with objects � go!

8/23/2012

3

Example Core System – Object System

• Key functionality � Run-time type information

– Polymorphic at run-time

– e.g. Engine wants to make weapon “shoot”

� object specific code knows how to do this

– Note, C++ and Java do this automatically

– But if C (or some other language), must do yourself

Example Core System – Object System

• Controllers – most objects can be altered, so

associate generic (and then specific) controller

Our Focus

• Mainly on the tech stuff

– How to build core engine components

– How to use engine to make custom world

– How to support user interaction

– How to set rules of play and control

• Less on content

– Art

– Sound

– Game design

Game Engine Architecture

• Have overview of what game engine does, but how to
go about designing your own engine?

• Components
– What are the major components?

– How to separate game-independent components from
game-dependent components?

• Organization
– How are components defined and organized?

• Structure
– Assume an object-oriented approach � what class

structure should be used for various elements?

• This class!

