Performance Tuning

2/21/2012

The Need for Tuning (1 of 2)

You don’t need to tune your code!

Most important - Code that works

Most important = Code that is clear, readable

— It will be re-factored

— It will be modified by others (even you!)

Less important = Code that is fast

— Is performance really the issue?

— Can a hardware upgrade fix performance problems?
— Can game design fix performance problems?
Ok, so you do really need to improve performance
— All good game programmers should know how to ...

The Need for Tuning (2 of 2)

* In most large games, typically small amount of

code uses most CPU time (or memory)

— Good programmer knows how to identify such code

— Good programmer knows techniques to improve
performance

Questions you (as a good programmer) may want

answered:

— How slow is my game?

— Where is my game slow?

— Why is my game slow?

— How can | make my game run faster?

Steps for Tuning Performance

Measure performance

— Timing and profiling

Identify “hot spots”

— Where code spends the most time/resources
Apply techniques to improve performance
— Tune

Re-test

Outline
* Introduction (done)
* Timing (next)
* Benchmarks
* Profiling
* Tuning
* Summary

Time Your Game
/usr/bin/time (Windows has timeit.exe)

claypool 54 fulham% /usr/bin/time saucer-shoot
2:24.04 elapsed (minutes:seconds)

13.26 user (seconds)
2.74 system (seconds)
11% CPU

Elapsed: Wall-clock time from start to finish

User: CPU time spent executing game

System: CPU time spent within OS game’s behalf
CPU: Percent time processing vs blocked for I/0
Useful, since provides a guideline for user-code (that
can be optimized) and general processing/waiting

— However, note 1/0 accounting isn’t always accurate

But ... which parts are most time consuming?

Time Parts of Your Game

e Call before and after
start = getTime()
// do stuff
stop = getTime()
elapsed = stop - start
* (Where did we do this before?)
e Use Dragonfly Clock
— Remember, this is not a singleton
*« E.g
clock.delta()
Pathfind()
elapsed = clock.delta()

2/21/2012

Outline
Introduction (done)
Timing (done)
Benchmarks (next)
Profiling
Tuning
Summary

Benchmark

* Benchmark — a program to assess relative performance
— E.g. Compare ATl and NVIDIA video cards
— E.g. Compare Google Chrome to Mozilla Firefox
* A “good” benchmark will assess performance using typical
workload
— Getting “typical” workload often difficult part
¢ Use benchmark to compare performance before and after
performance. E.g.
— Run benchmark on Dragonfly = old
— Tune performance
— Run benchmark on Dragonfly = new
— Is new better than old?
¢ What is a good benchmark for Dragonfly? What should it
do?

Bounce — What is it?

A benchmark designed to estimate Dragonfly
performance

— Primarily dependent upon number of objects can
support at target frame rate

Assumes “standard” game creates many objects
that move and interact

— Bounce stresses Dragonfly by creating many objects

When Dragonfly can’t keep up, has reached limit

Record value — provides basis for comparison

Screenshot/Demo

Steps to use

1. Download from Web
page

2. Compile

— Modify Makefile to point
to Dragonfly

3. Run

http://www.youtube.com/watch?v=8
2GGLjyz3ly&feature=youtu.be

Bounce Details

Balls random speed (0.1 to 1 spaces/step) and direction
Balls solid, so collide with other objects and screen edge
Start - 0 Balls

Each step = Create one ball

— So, about 30/second

Record frame time for latest 30 steps

— So, about 1 second of time

Compute median

If median 10% over target frame time (33 ms) , stop
iteration

Record number of Balls created

After three iterations = average Balls/iteration is max
objects (bounce-mark)

E(Show code: Ball, Bouncer, bounce) i

Bounce Data (1 of 2)

Bounce - a Dragonfly Benchmark (v1.0)
** Average maximum number of objects (bounce-mark): 1803 **

* grep BOUNCE dragonfly.log

05:29:36 BOUNCE: Frame 1 - 33 of 33 msec (median is @)
©05:29:36 BOUNCE: Frame 2 - 33 of 33 msec (median is @)
05:29:36 BOUNCE: Frame 3 - 33 of 33 msec (median is @)

BOUNCE: Frame 1634 - 34 of 33 msec (median is 33
BOUNCE: Frame 1635 - 34 of 33 msec (median is 34
BOUNCE: Frame 1636 - 37 of 33 msec (median is 34
BOUNCE: Frame 1637 - 33 of 33 msec (median is 33

05:32:34 BOUNCE: Frame 1772 - 38 of 33 msec (median is 36
©05:32:34 BOUNCE: Frame 1773 - 39 of 33 msec (median is 37)
05:32:34 BOUNCE: Iteration 3 - max objects: 1773
05:32:34 BOUNCE: Done. Average max objects: 1780

2/21/2012

Bounce Data (2 of 2)

Bounce - a Dragonfly Benchmark
(maximum game objects supported on right)

T T T T T T T T
instant

70 |-average

ol ”',M‘M i

- -a—wm»»—mmwwhm

Frame Time (milliseconds)
&

o 100 200 300 400 500 600 700 800
Number of Objects

System
Intel 15-2500, 3.30 GHz
8GB RAM
Windows 7 64-bit, Service Pack 1
Cygwin

Bounce Results

¢ 61x20 squares. Dependent upon resolution?
— 2400x1250 pixels = 675 objects
— 500x300 pixels = 652 objects
¢ 290x100 squares. Dependent upon squares?
— ~2400x1250 pixels > 467 objects
— ~500x300 pixels = 466 objects
* What about remotely (via putty) to CCC systems?
— 80x24 -> 1041, 1036
— 317x86 - 731, 740
— 80x24 (jumbo font) > 1351
— 100x459 (jumbo font) > 382, 390
¢ May want to take minimum bounce-mark. Or, may want
take “typical” setup. Or, may want your setup.
— Will definitely want setup that meets target specifications!

Bounce — What Does it Mean?

Provides target maximum number of moving objects
Engine can support

Note, game-code computations “cost”, too, so will decrease
max

Note, if single moving object, can support about n2 as many
objects (e.g. Walls)

In general:
B = estimated maximum reported by Bounce
M = number of moving objects
S = number of static (non-moving) objects
Need 2> M * (M + S) <= B?
Note, this could be refined with “velocity” for more
accuracy (and more complications)

How to Use for Planning

*+ Say Bounce reports 500 objects for target setup (B = 500)
* Making game, say a maze runner
— 100x100 walls
— Hero and up to 10 bad guys
— Can Dragonfly support?
— M=11,S =10000
= 11 * (11 + 10000) <= 500*500 ?
= 110,121 <= 250,000 (yes)
« Say 10x bigger world. And bullets, up to 50 “in flight” during firefight
— Can Dragonfly support?
— M=61, S =100000
— =61 * (61 +100000) <= 250000
— 6,103,721 <= 250,000 (no)
* Whattodo?
— Tune code (more later)
— Design differently
* Don’t spawn bad guys until Hero can see them
Make levels smaller (but have more of them)
Make sections of walls combined = multiple objects to one
Reduce movement speed / fire rate

M * (M + S) <= B2

Outline
Introduction (done)
Timing (done)
Benchmarks (done)
Profiling (next)
Tuning
Summary

Profiling

* Why?
— Learn where program spent time executing
* Which functions called
— Can help understand where complex program spends
its time
— Can help find bugs
* How?
— Re-compile so every function call records some info

— After running, profiler figures out what called, how
many times

— Also, takes samples to see where program is (about
100/sec)

* Keeps histogram

2/21/2012

gprof

GNU profiler
— Linux, and can install with cygwin, too
Works for any language GNU compiler supports: C, C++, Objective-
C, Java, Ada, Fortran, Pascal ...
— Forus > g++
Broadly, after profiling, outputs: flat profile and call graph
Flat profile provides overall “burn” perspective
— How much time program spent in each function
— How many times function was called
Call graph shows individual execution profile for each function
— Which functions called it
— Which other functions it called
— How many times
— Estimate how much time in subroutines of each function

http://docs.freebsd.org/44doc/psd/18.gprof/paper.pdf

Running gprof

1) Compile with -pg flag
— Need for creating all .o files
— And need when linking!
2) Run program normally
— Produces file “gmon.out” (overwritten if there)

— Note, program must exit normally! (e.g. via exit() or
return frommain())

3) Run gprof on program

— Uses data from gmon.out

— Often, redirect to file via >’
4) Analyze output

Example - Bounce

H g++ -c -pg -I../../dragonfly Ball.cpp -o Ball.o
COmpIIe g++ -c -pg -I../../dragonfly Bouncer.cpp -o Bouncer.o
g++ bounce.cpp Ball.o Bouncer.o libdragonfly.a -pg -o
bounce -lncurses -1lrt

Run

./bounce
Profile gprof bounce > out
Analyze (emacs or vi or pico or Less) out

Gprof — Flat Profile (e.g. QuickSort)

% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 partition
9.33 2.53 0.25 54328749 0.00 0.00 swap
2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray

Explanations

Observations
« swap() called many times, but each
fast
« consumes only 9% of overall time
« partition() called many times, fast
* consumes 85% of overall time

Each line describes one function

name: name of function

9%time: percentage of time spent exececuting
cumulative seconds: total time spent

self seconds: time spent executing

calls: number of times function called
(excluding recursive)

self s/call: avg time per exec (excluding
descendents)

Conclusions

* Improve performance ->make
partition() faster

* Don’t try to make fillArray() or

total s/call: avg time per exec (including quicksort() faster

descendents)

Gprof — Call Graph Profile

index % time self children called name
<spontaneous>
1] 100.0 0.00 2.68 main [1]
0.08 2.53 1/1 quicksort [2]
0.07 0.00 1/1 £illArray [5]
13330614 quicksort [2]
0.08 2.53 1/1 main [1]
[21 97.4 0.08 2.53 1+13330614 quicksort [2]
2.27 0.25 6665307/6665307 partition [3]
13330614 quicksort [2]

Each section describes one function

— Which functions called it, and how much time was consumed
— Which functions it calls, how many times, and for how long
Usually overkill > we won’t look at it in too much detail

% cumulative self
time seconds seconds name

Example - Bounce

28.35 3.74 3.74 WorldManager::boxesIntersect(Box, Box)
19.11 6.26 2.52 Box::getCorner()

14.40 8.16 1.90 WorldManager::isCollision(GameObject*, Position)
7.05 9.09 0.93

6.29 9.92 0.83

5.84 10.69 0.77 Position::getY()

3.71 11.18 0.49 GameObject::getPosition()

3.56 11.65 0.47 GameObject::getBox()

1.82 11.89 0.24 GameObjectListIterator::isDone()

1.74 12.12 0.23 : :setCorner(Position)

1.67 12.34 0.22 Box::~Box()

1.52 12.54 0.20 GameObjectListIterator::next()

1.06 12.68 0.14 Box::getVertical()

0.99 12.81 0.13

0.91 12.93 0.12

0.83 13.04 0.11

0.68 13.13 0.09 GameObjectListIterator::currentObject()
0.15 13.15 0.02 WorldManager::draw()

.08 13.16 0.01 Ball::draw()

0.08 13.17 0.01 GameObject::getXVelocityStep()

0.08 13.18 0.01 GraphicsManager: :worldToScreen(Position)
.08 13.19 0.01 EventOut::EventOut()

0.00 13.19 0.00 Ball::eventHandler(Event*)

0.00 13.19 0.00 Ball::setVelocity()

‘ Each is a sample taken every 0.01 seconds = 1319 samples (more later)

2/21/2012

Example — Saucer Shoot

% cumulative self
time seconds seconds calls name

25.00 0.02 0.02 4891807 Position::getX()

12.50 0.03 0.01 4773251 Position::getY()

12.50 ©.04 0.01 746173 GameObjectListItrtr::i

12.50 0.05 0.01 724474 GameObjectListItrtr::

12.50 0.06 0.01 447219 WorldManager::boxesIntersect()
12.50 0.07 0.01 19669 GraphicsManager::drawFrame()
12.50 0.08 0.01 602 GameObjectList::GameObjectList()
0.00 0.08 0.00 11186423 Position::~Position()

0.00 0.08 0.00 6045945 Box::getCorner()

0.00 0.08 0.00 2164572 Box::~Box()

.00 0.08 0.00 942686 GameObject::getPosition()

.00 0.08 0.00 825751 Box::getHorizontal()

Example — Bounce (call graph)

Total time in o
Total time in

function or children ° |
function or children

(percent) (0
ercen
1 0.00 @‘/ Perein (1)

0.00 - 171 GaneManager: :run() [3]
Time in 0.00 171 GaneManager: : startup() [40] Function name
! 0.00 1/1 <Bouncer: :Bouncer() [41]>
function 0.00 GameManager: : shutbown () [46]
a.aa/’ 172 GameManager: :getInstance() [107]
171 GameManager: :run() [3]
(2] 2. 1 GameManager: : run(int) [2]
2. 975/975 WorldManager: :update() [4]
d o. 976/976 WorldManager: :draw() [18]
0. o. 1/162708 WorldManager: : getInstance() [42]
o. o. 1956/2925 Clock: :delta() [74]
o. o. 976/976 GraphicsManager: : swapBuffers() [88]
Number of 0.00 .00 975/975 InputManager: :getInput() [91]
times called 0.00 .06 138/1132 LogManager : :uritelog(char const*, ...) [8@]
0.00 0.00 1/159811 GraphicsManager: :getInstance() [56]
0.00 0.00 1/3 InputManager: :getInstance() [106]
0.00 0.00 1/1610 LogManager : :getInstance() [76]
0.00 0.00 1/2 Clock: :Clock() [116]

Additional Options

* -A’ to annotate code

366 -> int Sprite::getHeight() {
return height;

}

6 -> void Sprite::setHeight(int new_height) {
height = new_height;
}

5300 -> int Sprite::getFrameCount() {
return frame_count;
}

* ‘I’ to profile by lines, not functions

Using Profiling (1 of 2)

« Determine where to optimize

— Pick the bottleneck and make more efficient

— This provides most “bang for the buck” (buck = time, often!)
* Eg.

— Program takes 10 seconds to execute

— Function A() takes 10% of the time

— Make A() 90% more efficient!

— How long does program take? = 9.1 seconds

— Function B() takes 90% of the time

— Instead of working on A(), make B() 50% more efficient

— How long does program take? = 5.5 seconds

* Bottleneck will then move = this is ok and expected
— Repeat, as needed

Using Profiling (2 of 2)

* However, just because bottleneck moves does not mean
performance is improving!
* E.g.Say boxesInstersect() is bottleneck

— Could alleviate by checking distance between objects before doing
boxesIntersect()

— Then boxesIntersect() called less often would be small

— But, distanceObjects() now huge!

— Is this better? Could be = but only if distance test “cheaper” than
intersection test

* Can’t make code more efficient (e.g. library)? = may be able to

redesign game

— Q: Consider Mario-type platformer that “can’t keep up”. How to
redesign to improve performance?

— A: make levels smaller

— A: spawn/move objects only when Hero is near

— A: perhaps new type of object — “platform” for movement?

Statistical Inaccuracies (1 of 3)

Count of function calls is accurate
Time/percent for function calls may not be = they
sampled

Samples only during run-time

— So, if game waiting on 1/0 (say, file or input) won’t show up

even if it caused big /0

Beware that periodic samples may exactly miss some
routines
Observer effect — by observing behavior of program,
we change it

— This is true for almost any measurements

— Certainly true for profiling

2/21/2012

Statistical Inaccuracies (2 of 3)

Actual error larger than one sampling period
The more samples, the larger the cumulative error
Guideline: value n times sampling period > expected error
is square-root of n sampling periods

— Say, 0.5 seconds for GameObjectListItrtr::isDone()

— Sample period is 0.01 seconds, so 50 times as large

— So, average error is sqrt(50) = ~7 sample periods = 0.07

seconds (maybe more)

Notfe,lsmall run-time (less than sample period) could still be
usefu

— E.g. Program's total run-time large, then small run-time for one
function says that function used little of whole = not worth
optimizing

il

Statistical Inaccuracies (3 of 3)

To get more accuracy, run program longer
Or, combine data from several runs

Run program once (e.g. a.out)

Move “gmon.out” to “gmon.sum”

Run program again

Merge:

gprof -s a.out gmon.out gmon.sum
Repeat steps 3 and 4, as needed
Combine the cumulative data then analyze:
gprof a.out gmon.sum > output-file

Outline
Introduction (done)
Timing (done)
Benchmarks (done)
Profiling (done)
Tuning (next)
Summary

Tuning (1 of 4)

Can choose better algorithms or data structures
— Mergesort instead of Quicksort?
— Linked List instead of Array?
Compiler optimizations
— gcc—0Ox
* X from 1 to 3, with some to more optimizations
* man gcc, for details

Unroll loops (compiler optimizations sometimes do this
automatically)

Re-write in assembly (but many compilers excellent)
Inline function calls

Tuning (2 of 4)

Better memory efficiency
— Memory is cheap, so not reduce memory for cost
— Rather, reduce use for performance - less access
often means keeping CPU busier
— Keep locality of reference to improve performance
* Pointers tend to scatter locality
* Arrays preserve locality
— Use smaller data structures if possible
* E.g. short instead of int
* E.g. smaller max size on arrays
— Compiler option -Os (for size optimization)

Tuning (3 of 4) — Multi-threading

Many modern CPU’s have multiple cores
— Can think of each as a separate CPU
Great if doing 2 independent tasks at once
— E.g. surfing web while playing music
Potential speedup is enormous (e.g 4 core CPU may run up to 4
times faster or support 4 times as many objects)
How to take advantage of for single application (e.g. game)?
— Concurrency through multi-threading
How to this?
— Easy on the surface (see right)

int a[max];
void DoStuff() {
for (int i=0; i<max; i++)
a[i] = i;
So, what'’s the problem?
— Need to share data
— Thread execution order not deterministic
— Threads need to synchronize

main() {
beginThread(DoStuff);
for (int i=0; i<max; i++)
a[i] = max - i;

2/21/2012

Tuning (4 of 4) — Multi-threading

Could partition tasks

— E.g. Half of array for each thread

Could “lock” data when using

— But wastes CPU time when other thread waiting
Threading best speedup for independent tasks
that minimize thread synchronization

In Dragonfly, would multithreading help? How
would you implement it?

Final Notes

Improving performance is not the first task of a
programmer. Nor the second. Nor the third. In fact, it
might never be a task!

Correctly working code is more important than
performance

Code clarity is more important the performance

Don’t improve performance unless you have to!
Improving performance is not the last task of a programmer
— You must test thoroughly after tuning = may introduce bugs!
However, when performance becomes the last obstacle
between a working, playable, fun game - you better
know how

— Requires “deep” technical knowledge

Summary

Tune performance when necessary

— (Are there easier solutions to the problem?)

Need measures of performance to gauge potential
improvements

— Timing

— Benchmarks

— Profile sections of code

Identify bottlenecks where most time spent

— That is where improvements should be targeted
Apply techniques to improve performance

— Data structures, algorithms, compiler optimizations,
multithreading ...

— Pick the right tool for the job!
Re-test when done

