
1

Physics for Games

IMGD 4000

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection

2

Introduction (1 of 2)
• Physics deals with motions of objects in virtual

scene
– And object interactions during collisions

• Physics increasingly (but only recently, last 3
years?) important for games
– Similar to advanced AI, advanced graphics

• Enabled by more processing
– Used to need it all for more core Gameplay

(graphics, I/O, AI)
– Now have additional processing for more

• Duo-core processors
• Physics hardware (Ageia’s Physx) and general GPU

(instead of graphics)
• Physics libraries (Havok FX) that are optimized

Introduction (2 of 2)

• Potential
– New gameplay elements
– Realism (ie- gravity, water resistance, etc.)
– Particle effects
– Improved collision detection
– Rag doll physics
– Realistic motion

3

Physics Engine – Build or Buy?

• Physics engine can be part of a game engine
• License middleware physics engine

– Complete solution from day 1
– Proven, robust code base (in theory)
– Features are always a tradeoff

• Build physics engine in-house
– Choose only the features you need
– Opportunity for more game-specific optimizations
– Greater opportunity to innovate
– Cost can be easily be much greater

Newtonian Physics (1 of 3)
• Sir Isaac Newton (around 1700) described three

laws, as basis for classical mechanics:
1. A body will remain at rest or continue to move in a

straight line at a constant velocity unless acted
upon by another force
– (So, Atari Breakout had realistic physics! ☺)

2. The acceleration of a body is proportional to the
resultant force acting on the body and is in the
same direction as the resultant force.

3. For every action, there is an equal and opposite
reaction

• More recent physics show laws break down when
trying to describe universe (Einstein), but good
for computer games

4

Newtonian Physics (2 of 3)
• Generally, object does not come to a stop naturally, but forces

must bring it to stop
– Force can be friction (ie- ground)
– Force can be drag (ie- air or fluid)

• Forces: gravitational, electromagnetic, weak nuclear, strong nuclear
– But gravitational most common in games (and most well-known)

• From dynamics:
– Force = mass x acceleration (F=ma)

• In games, forces often known, so need to calculate acceleration
a = F/m

• Acceleration used to update velocity and velocity used to update
objects position:

– x = x + (v + a * t) * t (t is the delta time)
– Can do for (x, y, z) positions
– (speed is just magnitude, or size, of velocity vector)

• So, if add up all forces on object and divide by mass to get
acceleration

Newtonian Physics (3 of 3)

• Kinematics is study of motion of bodies and forces
acting upon bodies

• Three bodies:
– Point masses – no angles, so only linear motion

(considered infinitely small)
• Particle effects

– Rigid bodies – shapes to not change, so deals with
angular (orientation) and linear motion
• Characters and dynamic game objects

– Soft bodies – have position and orientation and can
change shape (ie- cloth, liquids)
• Starting to be possible in real-time

5

Topics

• Introduction
• Point Masses (next)

– Projectile motion
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection

Point-Mass (Particle) Physics

• What is a Particle?
– A sphere of finite radius with a perfectly

smooth, frictionless surface
– Experiences no rotational motion

• Particle kinematics
– Defines the basic properties of particle

motion
– Position, Velocity, Acceleration

6

• Location of Particle in World Space
(units are meters (m))

– Changes over time when object moves

p(
t)

p(t+
t)

Particle Kinematics - Position

zyx ppp ,,=p

Tip! Make sure consistent units
used by all developers!

)()()(2

2

t
dt
dt

dt
dt pVa ==

Particle Kinematics - Velocity and
Acceleration

• Average velocity (units: meters/sec):
– [p(t+∆t) - p(t)] / ∆t
– But velocity may change in time ∆t

• Instantaneous velocity is derivative of position:

(Position is the integral of velocity over time)
• Acceleration (units: m/s2)

– First time derivative of velocity
– Second time derivative of position

)()()(lim)(
0

t
dt
d

t
tttt

t
pppV =

∆
−∆+

=
→∆

7

Newton’s 2nd Law of Motion

• Paraphrased – “An object’s change in velocity is
proportional to an applied force”

• The Classic Equation:

– m = mass (units: kilograms, kg)
– F(t) = force (units: Newtons)

() ()tmt aF =

What is Physics Simulation?

• The Cycle of Motion:

– Force, F(t), causes acceleration
– Acceleration, a(t), causes a change in velocity
– Velocity, V(t) causes a change in position

• Physics Simulation:

– Solving variations of the above equations over time
– Use to get positions of objects
– Render objects on screen
– Repeat to emulate the cycle of motion

8

Topics

• Introduction
• Point Masses

– Projectile motion (next)
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection

Example: 3D Projectile Motion (1 of 3)

V in
it

F = weight = mg

• Basis for entire game!
– Eagle eye:

http://www.teagames.com/games/eagleey
e/play.php

• Basic arrow projectile
– Fortress Fight:

http://www.nick.com/games/nick_games/avatar/
av_fortress.jhtml

• Basic castle battle
– Castle battle:

http://www.freeonlinegames.com/pl
ay/1618.html
• 3d perspective, physics on

blocks

9

Example: 3D Projectile Motion (1 of 3)
• Constant Force (ie- gravity)

– Force is weight of the projectile, W = mg
– g is constant acceleration due to gravity

• On earth, gravity (g) is 9.81 m/s2

• With constant force, acceleration is constant
• Easy to integrate to get closed form
• Closed-form “Projectile Equations of Motion”:

– These closed-form equations are valid, and exact*,
for any time, t, in seconds, greater than or equal to
tinit (Note, requires constant force)

()initinit ttt −+= gVV)(

() ()2
2
1)(initinitinitinit ttttt −+−+= gVpp

Example: 3D Projectile Motion (2 of 3)

• For simulation:
– Begins at time tinit
– Initial velocity, Vinit and position, pinit, at time tinit, are

known
– Can find later values (at time t) based on initial

values
• On Earth:

– If we choose positive Z to be straight up (away
from center of Earth), gEarth = 9.81 m/s2:

2m/s 81.9,0.0,0.0ˆ −=−= kgEarthEarthg

Note: the Moon is about 1/6th that of Earth

10

Pseudo-code for Simulating Projectile
Motion

void main() {
// Initialize variables
Vector v_init(10.0, 0.0, 10.0);
Vector p_init(0.0, 0.0, 100.0), p = p_init;
Vector g(0.0, 0.0, -9.81); // earth
float t_init = 10.0; // launch at time 10 seconds

// The game sim/rendering loop
while (1) {
float t = getCurrentGameTime(); // could use system clock
if (t > t_init) {

float t_delta = t - t_init;
p = p_init + (V_init * t_delta); // velocity
p = p + 0.5 * g * (t_delta * t_delta); // acceleration

}
renderParticle(p); // render particle at location p

}
}

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response (next)

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection

11

Frictionless Collision Response (1 of 4)

• Linear momentum – is the mass times the velocity
momentum = mV

– (units are kilogram-meters per second)
• Related to the force being applied

– 1st time derivative of linear momentum is equal to
net force applied to object

d/dt (mV(t)) = F(t)
• Most objects have constant mass, so:

d/dt (mV(t)) = m d/dt (V(t))
– Called the Newtonian Equation of Motion

• Since when integrated over time it determines the
motion of an object

Frictionless Collision Response (2 of 4)
• Consider two colliding particles
• For the duration of the collision, both particles

exert force on each other
– Normally, collision duration is very short, yet

change in velocity is dramatic (ex- pool balls)
• Integrate previous equation over duration of

collision
m1V1

+ = m1V1
- + Λ (equation 1)

• m1V1
- is linear momentum of particle 1 just before

collision
• m1V1

+ is the linear momentum just after collision
• Λ is the linear impulse

– Integral of collision force over duration of collision

12

Frictionless Collision Response (3 of 4)

• Newton’s third law of motion says for every action, there is
an equal and opposite reaction
– So, particle 2 is the same magnitude, but opposite in

direction (so, -1*Λ)
• Can solve these equations if know Λ
• Without friction, impulse force acts completely along unit

surface normal vector at point of contact
Λ = Λsn (equation 2)

– n is the unit surface normal vector (see collision
detection for point of contact

– Λs is the scalar value of the impulse
• (In physics, scalar is simple physical quantity that

does not depend on direction)
• So, have 2 equations with three unknowns (V1

+ ,V2
+, Λs).

– Need third equation to solve for all

Frictionless Collision Response (4 of 4)

• Third equation is approximation of material response to colliding
objects

(V1
+ -V2

+) n = -ε (V1
- -V2

-) n (equation 3)
– Note, in general, can collide at angle
– ε is coefficient of restitution

• Related to conservation or loss of kinetic energy
• ε is 1, totally elastic, so objects rebound fully
• ε is 0, totally plastic, objects no restitution, maximum loss of

energy
• In real life, depends upon materials

– Ex: tennis ball on raquet, ε is 0.85 and deflated basketball with
court ε is 0)

– (Next slides have details)

Period of deformation Period of restitution

13

Coefficient of Restitution (1 of 6)

• A measure of the elasticity of the collision
– How much of the kinetic energy of the colliding

objects before collision remains as kinetic energy
after collision

• Links:
– Basic Overview
– Wiki
– The Physics Factbook
– Physics of Baseball and Softball Bats
– Measurements of Sports Balls

Coefficient of Restitution (2 of 6)

• Defined as the ratio of the differences in
velocities before and after collision

ε = (V1
+ -V2

+) / (V1
- -V2

-)
• For an object hitting an immovable object

(ie- the floor)
ε = sqrt(h/H)

– Where h is bounce height, H is drop height

14

Coefficient of Restitution (3 of 6)

• Drop ball from fixed height (92
cm)

• Record bounce
• Repeat 5 times and average)
• Various balls

Coefficient of Restitution (4 of 6)
• Layers:

– Cork and rubber (like a
superball)

– Tightly round yarn
– Thin tweed
– Leather

• (Softball simpler – just cork
and rubber with leather)

More force needed to
compress, sort of like a spring

Spring would be
straight line:

F= k x

But is:
F= k xp

15

Coefficient of Restitution (5 of 6)
• Plus, force-compression curve

not symmetric
– Takes more time to expand

than compress
– Meaning, for F= kxp, p

different during relaxation
• Area inside curve is energy

that is lost to internal friction

• Coefficient of restitution
depends upon speed
– Makes it even more

complicated

Coefficient of Restitution (6 of 6)

• Last notes …
• Technically

– COR a property of a collision, not necessarily an
object
• 5 different types of objects 10 (5 choose 2 = 10)

different CORs
– May be energy lost to internal friction (baseball)
– May depend upon speed
– All that can get complicated!

• But, for properties not available, can estimate
– (ie- rock off of helmet, dodge ball off wall)
– Playtest until looks “right”

16

Putting It All Together

• Have 3 equations (equation 1, 1+ and 4) and 3
unknowns (V1

+, V2
+, Λs)

• Can then compute the linear impulse
m1m2(1+ε) (V1

- -V2
-) n

Λ = - () n (equation 4)
m1+m2

• Can then apply Λ to previous equations:
– Equation 1 to get V1

+ (and similarly V2
+)

• … and divide by m1 (or m2) to get after-collision
velocities

The Story So Far

• Visited basic concepts in kinematics and
Newtonian physics

• Generalized for 3 dimensions
• Ready to be used in some games!

• Show Pseudo code next
– Simulating N Spherical Particles under Gravity

with no Friction

17

Psuedocode (1 of 5)

void main() {
// initialize variables
vector v_init[N] = initial velocities;
vector p_init[N] = initial positions;
vector g(0.0, 0.0, -9.81); // earth
float mass[N] = particle masses;
float time_init[N] = start times;

float eps = coefficient of restitution;

Psuedocode (2 of 5)
// main game simulation loop
while (1) {

float t = getCurrentGameTime();
detect collisions (t_collide is time);
for each colliding pair (i,j) {

// calc position and velocity of i
float telapsed = t_collide – time_init[i];
pi = p_init[i] + (V_init[i] * telapsed); // velocity
pi = pi + 0.5*g*(telapsed*telapsed); // accel

// calc position and velocity of j
float telapsed = tcollide – time_init[j];
pj = p_init[j] + (V_init[j] * telapsed); // velocity
pj = pj + 0.5*g*(telapsed*telapsed); // accel

18

Psuedocode (3 of 5)

// for spherical particles, surface
// normal is just vector joining middle
normal = Normalize(pj – pi);

// compute impulse (equation 4)
impulse = normal;
impulse *= -(1+eps)*mass[i]*mass[j];
impulse *=normal.DotProduct(vi-vj); //Vi1Vj1+Vi2Vj2+Vi3Vj3
impulse /= (mass[i] + mass[j]);

Psuedocode (4 of 5)

// Restart particles i and j after collision (eq 1)
// Since collision is instant, after-collisions
// positions are the same as before
V_init[i] += impulse/mass[i];
V_init[j] -= impulse/mass[j]; // equal and opposite
p_init[i] = pi;
p_init[j] = pj;

// reset start times since new init V
time_init[i] = t_collide;
time_init[j] = t_collide;

} // end of for each

19

Psuedocode (5 of 5)

// Update and render particles
for k = 0; k<N; k++){
float tm = t – time_init[k];
p = p_init[k] + V_init[k] + tm; //velocity
p = p + 0.5*g*(tm*tm); // acceleration

render particle k at location p;
}

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response

• Rigid-Bodies (next)
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection

20

Rigid-Body Simulation Intro
• If no rotation, only gravity and occasional

frictionless collision, above is fine
• In many games (and life!), interesting

motion involves non-constant forces and
collision impulse forces

• Unfortunately, for the general case, often
no closed-form solutions

• Numerical simulation:
Numerical Simulation represents a series of techniques for
incrementally solving the equations of motion when forces applied to an
object are not constant, or when otherwise there is no closed-form
solution

• Family of numerical simulation techniques called finite
difference methods
– The most common family of numerical techniques for

rigid-body dynamics simulation
– Incremental “solution” to equations of motion

• Derived from Taylor series expansion of properties we are
interested in

S(t+∆t) = S(t) + ∆t d/dt S(t) + (∆t)2/2! d2/dt S(t) + …
• In general, not know values of any higher order. Truncate,

remove higher terms
S(t+∆t) = S(t) + ∆t d/dt S(t) + O(∆t)2

– Can do beyond, but always higher terms
– O(∆t)2 is called truncation error

• Can use to update properties (position)
– Called “simple” or “explicit” Euler integration

Numerical Integration of Newtonian
Equation of Motion

(Taylor series are used to estimate unknown functions)

21

Explicit Euler Integration (1 of 2)

• A “one-point” method since solve using
properties at exactly one point in time, t,
prior to update time, t+∆t.
– S(t+∆t) is the only unknown value so can solve

without solving system of simultaneous
equations

– Important – every term on right side is
evaluated at t, right before new time t+∆t

• View: S(t+∆t) = S(t) + ∆t d/dt S(t)
new state prior state state derivative

Explicit Euler Integration (2 of 2)

• Can write numerical integrator to integrate arbitrary
properties as change over time

• Integrate state vector of length N
void ExplicitEuler(N, new_S, prior_S, s_deriv, delta_t) {

for (i=0; i<N; i++) {
new_S[i] = prior_S[i] + delta_t * S_deriv[i];

}
}

• For single particle, S=(mV,p) and d/dt S = (F,V)
• Note, for 3D, mV and p have 3 values each:

– S(t) = (m1V1,p1,m2V2,p2, …, mNVN,pN)
– d/dt S(t) = (F1,V1,F2,V2, …,FN,VN)

22

Explicit Euler Integration Example (1 of 2)

F=Weight = mg Vinitpinit

Vinit = 30 m/s
Launch angle, φ: 75.2 degrees
Launch angle, θ: 0 degrees (all motion in xz plane)
Mass of projectile, m: 2.5 kg

tinit

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

mVinit

S = <mVinit, pinit > dS/dt = <mg,Vinit>

Explicit Euler Integration Example (1 of 2)

∆t = .01 s∆t = .1 s

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
∆+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=∆+=∆+

2900.2
0.0

0768.10
2549.72

0.0
2025.19

9000.4
0.0

7681.10
0476.72
0.0

2025.19

8000.7
0.0

5362.11
5951.67
0.0

2025.19

0.29
0.0
68.7

53.24
0.0
0.0

0.2
0.0
0.10
5.72

0.0
2.19

)()()(tt
dt
dtttt SSS

∆t = .2 s

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2895.2
0.0

0768.10
2549.72
0.0
2.19

8510.4
0.0

1536.10
0476.72
0.0
2.19

6038.7
0.0

5362.11
5951.67
0.0
2.19

 Solution form-Closed Exact,

23

Pseudo Code for Numerical Integration
(1 of 2)

Vector cur_S[2*N]; // S(t+∆t)
Vector prior_S[2*N]; // S(t)
Vector S_deriv[2*N]; // d/dt S at time t
float mass[N]; // mass of particles
float t; // simulation time t

void main() {
float delta_t; // time step

// set current state to initial conditions
for (i=0; i<N; i++) {

mass[i] = mass of particle i;
cur_S[2*i] = particle i initial momentum;
cur_S[2*i+1] = particle i initial position;

}

// Game simulation/rendering loop
while (1) {

doPhysicsSimulationStep(delta_t);
for (i=0; i<N; i++) {

render particle i at position cur_S[2*i+1];
}

}

Pseudo Code for Numerical Integration
(2 of 2)

// update physics
void doPhysicsSimulationStep(delta_t) {

copy cur_S to prior_S;

// calculate state derivative vector
for (i=0; i<N; i++) {

S_deriv[2*i] = CalcForce(i); // could be just gravity
S_deriv[2*i+1] = prior_S[2*i]/mass[i]; // since S[2*i] is

// mV divide by m
}

// integrate equations of motion
ExplicitEuler(2*N, cur_S, prior_S, S_deriv, delta_t);

// by integrating, effectively moved
// simulation time forward by delta_t
t = t + delta_t;

}

24

Collision Response in Simulation Loop
• Code can be used in game without collisions
• With collisions, need to modify
• If at beginning of step (at t before integration)

– Resolve before copy cur_S to prior_S
– For each colliding pair, use equation 4 to compute

impulse and linear momentums as before
– Replace cur_S with after collision momentums
– When copy, ExplicitEuler() will use new after-

collision velocities to resolve
• In general, can happen between t and ∆t (and

different for each pair!), say tc
– Split into two parts, t to tc and then tc to ∆t
– Integrate twice for each collision

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error (next)
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection

25

Explicit Euler Integration - Computing
Solution Over Time

0.00

10.00

20.00

30.00

40.00

50.00

0.00 20.00 40.00 60.00

Horizontal Position (m)

Ve
rt

ic
al

 P
os

iti
on

 (m
) Projectile Launch

Position
Target Position

Closed-Form

Explicit Euler

• The solution proceeds step-by-step, each time
integrating from the prior state

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00
5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04
5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08
5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11

Μ Μ Μ Μ Μ
10.40 51.48 0.00 20.87 19.20 0.00 -59.93 0.00 0.00 -24.53 7.68 0.00 -23.97

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

Truncation Error
• Numerical solution can be different from exact, closed-form

solution
– Difference between exact solution and numerical solution

is primarily truncation error
• Equal and opposite to value of terms removed from Taylor

Series expansion to produce finite difference equation
• Truncation error, left unchecked, can accumulate to cause

simulation to become unstable
– This ultimately produces floating point overflow
– Unstable simulations behave unpredictably

• Sometimes, truncation error can become zero
– In other words, finite difference equation produces exact, correct

result
– For example, when zero force is applied

• But, more often truncation error is nonzero. Control by:
– Reduce time step, ∆t (Next slide)
– Select a different numerical integrator (Vertlet and others, not

covered). Typically, more state kept. Stable within bounds.

26

Truncation Error Example (1 of 2)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==∆

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==∆

0005.0
0.0
0.0

2895.2

0.0
0768.10

 -
2900.2

0.0
0768.10

 0.01s)t(Error Truncation

049.0
0.0
0.0

8510.4

0.0
1536.10

 -
9000.4

0.0
1536.10

 0.1s)t(Error Truncation

1962.0
0.0
0.0

6038.7

0.0
5362.11

 -
800.7
0.0

5362.11
 0.2s)t(Error Truncation

exactnumerical

exactnumerical

exactnumerical

Truncation Error

Can only compare if normalize (divide by ∆t)

Truncation Error Example (2 of 2)

(1/∆t) * Truncation Error is a linear (first-
order) function of ∆t: explicit Euler
Integration is First-Order-Accurate in
time

This accuracy is denoted by “O(∆t)”

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.05 0.10 0.15 0.20 0.25

∆t(secs)

(1
/

t)
 *

 T
ru

nc
at

io
n

E
rr

or

Guidelines? Step less than frame rate (otherwise, no update)
∆t under 30 ms (20 ms good choice)

27

Frame Rate Independence

• Given numerical simulation sensitive to time
step (∆t), important to create physics
engine that is frame-rate independent
– Results will be repeatable, every time run

simulation with same inputs
•Regardless of CPU/GPU performance

– Maximum control over simulation
• Pseudo code next

Pseudo Code for Frame Rate
Independence

void main() {
float delta_t = 0.02; // physics time
float game_time; // game time
float prev_game_time; // game time at last step
float physics_lag_time=0.0; // time since last update

// simulation/render loop
while(1) {

update game_time; // could be take from system clock
physics_lag_time += (game_time – prev_game_time);
while (physics_lag_time > delta_t) {

doPhysicsSimulation(delta_t);
physics_lag_time -= delta_t;

}

prev_game_time = game_time;

render scene;
}

}

28

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion (next)

• Soft Body Dynamic System
• Collision Detection

Generalized Translation Motion

• Have basic numerical Physics in place
• Consider variety of non-constant forces

– Any combination act on object at any time
– Apply in calcForce(i) code, previously

• Net force, Fnet, by adding all applied forces
– Fnet exactly value to be used in state

derivative vector for numerical integration
– If Fnet has zero magnitude, the object has

said to be in translational equilibrium,
although it may still have nonzero velocity

29

Generalized Translation Motion

• Previous equations work for objects of any size
– But describe motion at a single point

• For rigid bodies, typically choose center of mass
• May be rotation

Center of Mass

worldX

worldZ

objectX
objectZ

Generalized Motion
Mini-Outline

• Linear Springs
• Viscous Damping
• Aerodynamic Drag
• Surface Friction
• Example

30

Linear Springs

• Spring connects end-points, pe1 and pe2

• Has rest length, lrest

– Exerts zero force
– Stretched longer than lrest attraction
– Stretched shorter than lrest repulsion

• Hooke’s law
– Fspring=k (l – lrest) d
– k is spring stiffness (in Newtons per meter)
– l is current spring length
– d is unit length vector from pe1 to pe2 (provides direction)

• Fspring applied to object 1 at pe1

• -1 * Fspring applied to object 2 at pe2

Viscous Damping
• Connects end-points, pe1 and pe2

• Provides dissipative forces (reduce kinetic energy)
• Often used to reduce vibrations in machines, suspension

systems, etc.
– Called dashpots

• Apply damping force to objects along connected axis (put on
the brakes)
– Note, relative to velocity along axis

Fdamping = c ((Vep2-Vep1) d) d)
– d is unit length vector from pe1 to pe2 (provides direction)
– c is damping coefficient

• Fdamping applied to object 1 at pe1

• -1 * Fdamping applied to object 2 at pe2

31

Aerodynamic Drag
• An object through fluid has drag in

opposite direction of velocity
• Simple representation:

Fdrag = -½ ρ |V|2 CD Sref V ÷ |V|
• Sref is front-projected area of object

– Cross-section area of bounding sphere
• ρ is the mass-density of the fluid
• CD is the drag co-efficient ([0..1], no units)

– Typical values from 0.1 (streamlined) to 0.4
(not streamlined)

Surface Friction (1 of 2)
• Two objects collide or slide within contact plane friction
• Complex: starting (static) friction higher than (dynamic)

friction when moving. Coulomb friction, for static:
– Ffriction is same magnitude as µs|F| (when moving µd|F|)

• µs static friction coefficient
• µd is dynamic friction coefficient
• F is force applied in same direction

– (Ffriction in opposite direction)
• Friction coefficients (µs and µd) depend upon material

properties of two objects
– Examples:

• ice on steel has a low coefficient of friction (the two
materials slide past each other easily)

• rubber on pavement has a high coefficient of friction (the
materials do not slide past each other easily)

– Can go from near 0 to greater than 1
• Ex: wood on wood ranges from 0.2 to 0.75

– Must be measured (but many links to look up)
– Generally, µs larger than µd

32

Surface Friction (2 of 2)

• If V is zero:
– Ffriction = -[Ft / |Ft|] min(µs |Fn|, |Ft|)
– min() ensures no larger (else starts to move)

• If V is non-zero:
– Ffriction = [-Vt / |Vt|] µd |Fn|

• Friction is dissipative, acting to reduce
kinetic energy

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System (next)
• Collision Detection

33

Simple Spring-Mass-Damper Soft-Body
Dynamics System (1 of 3)

• Using results thus far, construct a
simple soft-body dynamics
simulator

• Create polygon mesh with
interesting shape

• Use physics to update position of
vertices
– Create particle at each vertex
– Assign mass
– Create a spring and damper

between unique pairs of
particles
• Spring rest lengths equal to

distance between particles
• Code listing 4.3.8

1 spring and 1 damper

Simple Spring-Mass-Damper Soft-Body
Dynamics System (2 of 3)

void main() {
initialize particles (vertices)
initialize spring and damper between pairs
while (1) {

doPhysicsSimulationStep()
for each particle

render

}
}
• Key is in vector CalcForce(i)

– (Next)

34

Simple Spring-Mass-Damper Soft-Body
Dynamics System (3 of 3)

vector CalcForce(i) {
vector SForce /* spring */, Dforce /* damper */;
vector net_force; // returns this

// Initialize net force for gravity
net_force = mass[i] * g;

// compute spring and damper forces for each other vertex
for (j=0; j<N; j++) {

// Spring Force
// compute unit vector from i to j and length of spring
d = cur_S[2*j+1] – cur_S[2*i+1];
length = d.length();
d.normalize(); // make unit length

// i is attracted if < rest, repelled if > rest (equation 20)
SForce = k[i][j] * (length – lrest[i][j]) * d;

// Damping Force
// relative velocity
relativeVel = (cur_s[2*j]/mass[j]) – (cur_S[2*i]/mass[i]);

// if j moving away from i then draws i towards j, else repels i (equation 21)
DForce = c[i][j] * relativeVel.dotProduct(d) * d;

// increment net force
net_force = SForce + DForce;

}
return (net_force);

Final Comments (1 of 2)
• Also rotational motion (torque), not covered
• Simple Games

– Closed-form particle equations may be all you need
– Numerical particle simulation adds flexibility without

much coding effort
• Works for non-constant forces

– Provided generalized rigid body simulation
• Want more? Additional considerations

– Multiple simultaneous collision points
– Articulating rigid body chains, with joints
– Rolling friction, friction during collision
– Resting contact/stacking
– Breakable objects
– Soft bodies (deformable)
– Smoke, clouds, and other gases
– Water, oil, and other fluids

35

Final Comments (2 of 2)
• Commercial Physics Engines

– Game Dynamics SDK (www.havok.com)
– Renderware Physics (www.renderware.com)
– NovodeX SDK (www.novdex.com)

• Freeware/Shareware Physics Engines
– Open Dynamics Engine (www.ode.org)
– Tokamak Game Physics SDK (www.tokamakphysics.com)
– Newton Game Dynamics SDK (www.newtondynamics.com)

• Save time and trouble of own code
• Many include collision detection
• But … still need good understanding of physics to use

properly

Topics

• Introduction
• Point Masses

– Projectile motion
– Collision response

• Rigid-Bodies
– Numerical simulation
– Controlling truncation error
– Generalized translation motion

• Soft Body Dynamic System
• Collision Detection (next)

36

Collision Detection
• Determining when objects collide not as easy as it

seems
– Geometry can be complex (beyond spheres)
– Objects can move fast
– Can be many objects (say, n)

• Naïve solution is O(n2) time complexity, since every
object can potentially collide with every other object

• Two basic techniques
– Overlap testing

• Detects whether a collision has already occurred
– Intersection testing

• Predicts whether a collision will occur in the future

Overlap Testing

• Facts
– Most common technique used in games
– Exhibits more error than intersection testing

• Concept
– For every simulation step, test every pair of

objects to see if overlap
– Easy for simple volumes like spheres, harder for

polygonal models
• Useful results of detected collision

– Collision normal vector (needed for physics actions,
as seen earlier)

– Time collision took place

37

Overlap Testing:
Collision Time

• Collision time calculated by moving object back in
time until right before collision
– Move forward or backward ½ step, called bisection

B B

t1

t0.375

t0.25

B

t0

Iteration 1
Forward 1/2

Iteration 2
Backward 1/4

Iteration 3
Forward 1/8

Iteration 4
Forward 1/16

Iteration 5
Backward 1/32

Initial Overlap
Test

t0.5
t0.4375 t0.40625

BB B

A

A

A

A A A

• Get within a delta (close enough)
– With distance moved in first step, can know “how close”

• In practice, usually 5 iterations is pretty close

Overlap Testing:
Limitations

• Fails with objects that move too fast
– Unlikely to catch time slice during overlap

t0t-1 t1 t2
bullet

window

• Possible solutions
– Design constraint on speed of objects (fastest

object moves smaller distance than thinnest object)
• May not be practical for all games

– Reduce simulation step size
• Adds overhead since more computation

38

Intersection Testing
• Predict future collisions
• Extrude geometry in direction of movement

– Ex: swept sphere turns into a “capsule” shape
• Then, see if overlap
• When predicted:

– Move simulation to time of collision
– Resolve collision
– Simulate remaining time step

t0

t1

Q1

Q2

P1

P2

P

Q

t=0

t=0

t=1

t=1

t

Intersection Testing:
Sphere-Sphere Collision

()
2

2
22

B
Ad BA ⋅

−=

() () ()()
,2

2222

B

rrΑB
t QP +−−⋅−⋅−
=

BAΒΑ

() ().QQPPB
QPA

1212

11

−−−=
−=

Or, simpler:

If distance large
enough, no collision:

()22
QP rrd +>

If t is in [0..1] then collide
(p377)

39

Dealing with Complexity

• Complex geometry must be simplified
– Complex object can have 100’s or 1000’s of

polygons
– Testing intersection of each costly

• Reduce number of object pair tests
– There can be 100’s or 1000’s of objects
– If test all, O(n2) time complexity

Complex Geometry – Bounding Volume
(1 of 3)

• Bounding volume is simple geometric shape
that completely encapsulates object
– Ex: approximate spiky object with ellipsoid

• Note, does not need to encompass, but
might mean some contact not detected
– May be ok for some games

40

Complex Geometry – Bounding Volume
(2 of 3)

• Testing cheaper
– If no collision with bounding volume, no more testing

is required
– If there is a collision, then there could be a collision

• More refined testing can be used
• Commonly used bounding volumes

– Sphere – if distance between centers less than sum
of Radii then no collision

– Box – axis-aligned (lose fit) or oriented (tighter fit)

Axis-Aligned Bounding Box Oriented Bounding Box

Complex Geometry – Bounding Volume
(3 of 3)

• For complex object, can fit several
bounding volumes around unique parts
– Ex: For avatar, boxes around torso and

limbs, sphere around head
• Can use hierarchical bounding volume

– Ex: large sphere around whole avatar
• If collide, refine with more refined bounding

boxes

41

Complex Geometry – Minkowski Sum (1 of 2)
• Take sum of two convex volumes to create

new volume
– Sweep origin (center) of X all over Y

Y}B and :{ ∈∈+=⊕ XABAYX

X ⊕ Y⊕ =YX X ⊕ Y =

+ =

Complex Geometry – Minkowski Sum (2 of 2)

• Test if single point in X in new volume, then
collide
– Take center of sphere at t0 to center at t1

– If line intersects new volume, then collision

t0

t1

t0

t1

42

Reduced Collision Tests - Partitioning

• Partition space so only test objects in same cell
– If N objects, then sqrt(N) x sqrt(N) cells to get linear

complexity
• But what if objects don’t align nicely?
• What if all objects in same cell? (same as no cells)

Reduced Collision Tests – Plane Sweep
• Objects tend to stay in same place

– So, don’t need to test all pairs
• Record bounds of objects along axes
• Any objects with overlap on all axes should be tested further
• Time consuming part is sorting bounds

– Quicksort O(nlog(n))
– But, since objects don’t move, can do better if use

Bubblesort to repair – nearly O(n)

C

B

R

A

x

y

A0 A1 R0 B0 R1 C0 C1B1

B0

B1
A1

A0

R1

R0

C1

C0

43

Collision Resolution (1 of 2)
• Once detected, must take action to resolve

– But effects on trajectories and objects can differ
• Ex: Two billiard balls strike

– Calculate ball positions at time of impact
– Impart new velocities on balls
– Play “clinking” sound effect

• Ex: Rocket slams into wall
– Rocket disappears
– Explosion spawned and explosion sound effect
– Wall charred and area damage inflicted on nearby

characters
• Ex: Character walks through invisible wall

– Magical sound effect triggered
– No trajectories or velocities affected

Collision Resolution (2 of 2)
• Prologue

– Collision known to have occurred
– Check if collision should be ignored
– Other events might be triggered

• Sound effects
• Send collision notification messages (OO)

• Collision
– Place objects at point of impact
– Assign new velocities

• Using physics or
• Using some other decision logic

• Epilog
– Propagate post-collision effects
– Possible effects

• Destroy one or both objects
• Play sound effect
• Inflict damage

• Many effects can be done either in the prologue or epilogue

44

Collision Resolution – Collision Step

• For overlap testing, four steps
– Extract collision normal
– Extract penetration depth
– Move the two objects apart
– Compute new velocities (previous stuff)

• For intersection testing, two steps
– Extract collision normal
– Compute new velocities (previous stuff)

Collision Resolution – Collision Normal
• Find position of objects before impact

– Use bisection
• Use two closest points to construct the collision normal

vector (Case A)
• For spheres, normal is line connecting centers (Case B)

t0

t0

t0.25

t0.5

t0.25

t0.5

t0.75

t0.75

t1

t1

 Collision

 Normal

A

B

45

Collision Resolution – Intersection
Testing

• Simpler than resolving overlap testing
– No need to find penetration depth or move

objects apart
• Simply

1. Extract collision normal
2. Compute new velocities

Collision Detection Summary

• Test via overlap or intersection
(prediction)

• Control complexity
– Shape with bounding volume
– Number with cells or sweeping

• When collision: prolog, collision, epilog

