
4/11/2016

1

Basic Game Physics

IMGD 4000

With material from: Introduction to Game
Development, Second Edition. Edited by Steve
Rabin. Cengage Learning, 2009. (Chapter 4.3)

Introduction (1 of 2)

• What is game physics?

– Computing motion of objects in virtual scene

• Including player avatars, NPC’s, inanimate objects

– Computing mechanical interactions of objects

• Interaction usually involves contact (collision)

– Simulation must be real-time (versus high-
precision simulation for CAD/CAM, etc.)

– Simulation may be very realistic, approximate, or
intentionally distorted (for effect)

2

Introduction (2 of 2)

• And why is it important?

– Can improve immersion

– Can support new gameplay elements

– Becoming increasingly prominent (expected) part of
high-end games

– Like AI and graphics, facilitated by hardware
developments (multi-core, GPU)

– Maturation of physics engine market

3

Physics Engines

• Similar buy vs. build analysis as game engines
– Buy:

• Complete solution from day one
• Proven, robust code base (hopefully)
• Feature sets are pre-defined
• Costs range from free to expensive

– Build:
• Choose exactly features you want
• Opportunity for more game-specification optimizations
• Greater opportunity to innovate
• Cost guaranteed to be expensive (unless features extremely

minimal)

4

Physics Engines

• Open source
– Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue,

PAL, Tokamak, Farseer, Physics2d, Glaze

• Closed source (limited free distribution)
– Newton Game Dynamics, Simple Physics Engine, True Axis,

PhysX

• Commercial
– Havok, nV Physics, Vortex

• Relation to Game Engines
– Native, e.g,. C4
– Integrated, e.g., UE4 + PhysX
– Pluggable, e.g., C4 + PhysX, jME + ODE (via jME Physics)

Basic Game Physics Concepts

• Why are we studying this?
– To use an engine effectively, you need to understand

something about what it’s doing
– You may need to implement small features or

extensions yourself
– Cf., owning a car without understanding anything

about how it works (possible, yes, but ideal?, no)

• Examples

– Kinematics and dynamics

– Projectile motion
– Collision detection and response

6

4/11/2016

2

Outline

• Introduction (done)

• Kinematics (next)

• Rigid Body Simulation

• The Firing Solution

• Collision Detection

• Ragdoll Physics

• PhysX

7 8

Kinematics (1 of 3)

• Study of motion of objects without taking into
account mass or force

• Basic quantities: position, time

• ... and their derivatives: velocity, acceleration

• Basic equations:

1) d = vt
2) v = u + at
3) d = ut + ½at2
4) v2 = u2 + 2ad

Where:
 t - (elapsed) time
 d - distance (change in position)
 v - (final) velocity (change in distance per unit time)
 a - acceleration (change in velocity per unit time)
 u - (initial) velocity

Note, equation #3 is the integral of equation #2 with
respect to time (see next slide). Equation #4 can be useful.

Kinematics (2 of 3)

d = ut
Example:
u = 20 m/s, t = 300 s
d = 20 x 3000 = 6000 m

d = ut + ½at2
Example:
u=0 m/s, a=4m/s2, t=3s
d = 0x3 + 0.5x4x9 = 18m

Non-accelerated motion Accelerated motion

10

Kinematics (3 of 3)

Prediction Example: If you throw a ball straight
up into the air with an initial velocity of 10
m/sec, how high will it go?

 v2 = u2 + 2ad

 u = 10 m/sec (initial speed upward)
 a = -10 m/sec2 (approx gravity)
 v = 0 m/sec (at top of flight)
 0 = 102 + 2(-10)d
 d = 5 meters

(Note, answer independent of mass of ball!)

v = 0

u = 10

d

a = -10

11

Doing It In 3D

• Mathematically, consider all quantities
involving position to be vectors:

 d = vt
 v = u + at
 d = ut + at2/2

• Computationally, using appropriate 3-element
vector datatype

Dynamics

• Notice that preceding kinematic descriptions say
nothing about why an object accelerates (or why
its acceleration might change)

• To get a full “modern” physical simulation you
need to add two more basic concepts:
– force

– mass

• Discovered by Sir Isaac Newton

• Around 1700

12

4/11/2016

3

13

Newton’s Laws

1. A body will remain at rest or continue to
move in a straight line at a constant speed
unless acted upon by a force.

2. The acceleration of a body is proportional to
the resultant force acting on the body and is
in the same direction as the resultant force.

3. For every action, there is an equal and
opposite reaction.

14

Motion Without Newton’s Laws

• Pac-Man or early Mario style
– Follow path with instantaneous changes in speed and

direction (velocity)

– Not physically possible

• Note - fine for some casual games (especially
with appropriate animations)

15

Newton’s Second Law
F = ma

At each moment in time:

 F = force vector, in Newton’s

 m = mass (intrinsic property of matter), in kg

 a = acceleration vector, in m/sec2

Player cares about state of world (position of objects). Equation
is fundamental driver of all physics simulations.

• Force causes acceleration (a = F/m)

• Acceleration causes change in velocity

• Velocity causes change in position
16

How Are Forces Applied?

• May involve contact
– Collision (rebound)
– Friction (rolling, sliding)

• Without contact
– Rockets/Muscles/Propellers
– Gravity
– Wind (if not modeling air particles)
– Magic

• Dynamic (force) modeling also used for
autonomous steering behaviors

17

Computing Kinematics in Real Time
start = getTime() // start time

p = 0 // initial position

u = 10 // initial velocity

a = -10

function update () { // in game loop

 now = getTime()

 t = now – start

 simulate(t)

}

function simulate (t) {

 d = (u + (0.5 * a * t)) * t

 move object to p + d // move to loc. computed since start

}

d = ut + at2/2

Note! Number of calls and time values to simulate() depend on (changing)
game loop time (frame rate)

Is this a problem? It can be! For rigid body simulation with colliding forces and
friction (e.g., many interesting cases) …

u, p

d

a = -10

Outline

• Introduction (done)

• Kinematics (done)

• Rigid Body Simulation (next)

• The Firing Solution

• Collision Detection

• Ragdoll Physics

• PhysX

18

4/11/2016

4

Rigid-Body Simulation
• If no rotation, only gravity and occasional

frictionless collision, basic Kinematic equations are
fine
– Closed form solution can be integrated
 (e.g., d = ut + ½at2)

• But in many games (and life!), interesting motion
involves non-constant forces and collision impulse
forces
– Unfortunately, often no closed-form solutions

• What to do? Numerical simulation

Numerical Simulation techniques for incrementally solving equations of
motion when forces applied to object are not constant, or when otherwise
there is no closed-form solution

19

Numerical Simulation of Newtonian
Equation of Motion (1 of 2)

• Suppose know position (p),
velocity (v) and acceleration
(a) at time (ti) and frame time
(∆t)

• Want position at next frame
time (ti+1)
– Don’t know exactly how forces

are affecting (wind, friction,
gravity …)

• Can compute:
– pi+1 = si + vi * ∆t

– vi+1 = vi + a * ∆t

vs.

What is this doing? Instead of integrating a
curve, sum over discrete time-slices

• Family of numerical sim techniques called finite difference methods
– Incremental “solution” to equations of motion
– Most common for rigid-body dynamics simulation

• Derived from Taylor series expansion of properties interested in

S(t+Δt) = S(t) + Δt d/dt S(t) + (Δt)2/2! d2/dt S(t) + …

• In general, not know values of any higher order. Truncate, remove

higher terms
S(t+Δt) = S(t) + Δt d/dt S(t) + O(Δt)2

– Can do beyond, but always higher terms

– O(Δt)2 is called truncation error
• Size is proportional to Δt (step size)

• Can use to update properties (position)
– Called “simple” or “explicit” Euler integration

Numerical Simulation of Newtonian
Equation of Motion (2 of 2)

(Taylor series are used to estimate unknown functions)

Explicit Euler Integration (1 of 2)

• A “one-point” method since solve using
properties at exactly one point in time, t, prior
to update time, t+Δt

– S(t+Δt) is only unknown value so can solve
without solving system of simultaneous equations

– Every term on right side is evaluated at t, right
before new time t+Δt

• View: S(t+Δt) = S(t) + Δt d/dt S(t)

new state prior state state derivative

22

Explicit Euler Integration (2 of 2)

• Write numerical integrator over arbitrary properties as change over
time

• For single particle, S = (mV, p) and d/dt S = (F, V)
– Derivative of position (p) is velocity (V)

• i.e., how position changes with respect to time

– Derivative of momentum (mass m * V) is force (F)
• i.e., how momentum changes with respect to time

• Integrate state vector of length N
 Vector ExplicitEuler(int N, Vector prior_S, Vector deriv_S, float delta_t)
 Vector new_S[N];
 for (i=0; i<N; i++)
 new_S[i] = prior_S[i] + delta_t * deriv_S[i];
 return new_S;

• Note, for 3D, mV and p have 3 values each
– S(t) = (m1V1,p1,m2V2,p2, …, mNVN,pN)

– d/dt S(t) = (F1,V1,F2,V2, …,FN,VN)

23

Explicit Euler Integration Example (1 of 2)

F=Weight = mg Vinit pinit

Vinit = 30 m/s

Launch angle: 75.2 degrees (all motion in xz plane)
Mass of projectile, m: 2.5 kg

tinit

T im e p x p y p z m V x m V y m V z F x F y F z V x V y V z

5 .0 0 1 0 .0 0 0 .0 0 2 .0 0 1 9 .2 0 0 .0 0 7 2 .5 0 0 .0 0 0 .0 0 -2 4 .5 3 7 .6 8 0 .0 0 2 9 .0 0

V e lo c ity (m /s)P o s it io n (m) L in e a r M o m e n tu m (k g -m /s) F o rc e (N)

mVinit

S = <mVinit, pinit > dS/dt = <mg,Vinit>

24

4/11/2016

5

Explicit Euler Integration Example (2 of 2)

Dt = .01 s Dt = .1 s

D

DD

2900.2

0.0

0768.10

2549.72

0.0

2025.19

9000.4

0.0

7681.10

0476.72

0.0

2025.19

8000.7

0.0

5362.11

5951.67

0.0

2025.19

0.29

0.0

68.7

53.24

0.0

0.0

0.2

0.0

0.10

5.72

0.0

2.19

)()()(tt
dt

d
tttt SSS

Dt = .2 s

2895.2

0.0

0768.10

2549.72

0.0

2.19

8510.4

0.0

1536.10

0476.72

0.0

2.19

6038.7

0.0

5362.11

5951.67

0.0

2.19

 Solution form-Closed Exact,

25

Pseudo Code for Numerical Integration (1 of 2)

Vector cur_S[2*N]; // S(t+Δt)
Vector prior_S[2*N]; // S(t)
Vector S_deriv[2*N]; // d/dt S at time t
float mass[N]; // mass of particles
float t; // simulation time t

void main() {
 float delta_t; // time step

 // Set current state to initial conditions
 for (i=0; i<N; i++) {
 mass[i] = mass of particle i;
 cur_S[2*i] = particle i initial momentum;
 cur_S[2*i+1] = particle i initial position;
 }

 // Game simulation/rendering loop
 while (1) {
 doPhysicsSimulationStep(delta_t); // update state of all particles
 for (i=0; i<N; i++) {
 render particle i at position cur_S[2*i+1];
 }
 }

26

Pseudo Code for Numerical Integration (2 of 2)

// Update state of all particles based on physics
void doPhysicsSimulationStep(float delta_t) {
 copy cur_S to prior_S;

 // Calculate state derivative vector
 for (i=0; i<N; i++) {
 S_deriv[2*i] = CalcForce(i); // could be just gravity
 S_deriv[2*i+1] = prior_S[2*i]/mass[i]; // since S[2*i] is mV divide by m
 }

 // Integrate equations of motion
 ExplicitEuler(2*N, cur_S, prior_S, S_deriv, delta_t);

 // By integrating, effectively moved simulation time forward by delta_t
 t = t + delta_t;
}

27

Computing Position Over Time
• Solution proceeds step-by-step, each time integrating from prior state

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

4 0 .0 0

5 0 .0 0

0 .0 0 2 0 .0 0 4 0 .0 0 6 0 .0 0

H o r iz o n ta l P o s it io n (m)

V
e

r
ti

c
a

l
P

o
s

it
io

n
 (

m
) P ro je c t i le L a u n c h

P o s it io n

Ta rg e t P o s it io n

C lo s e d -F o rm

E x p lic it E u le r

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04

5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08

5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11

M M M M M
10.40 51.48 0.00 20.87 19.20 0.00 -59.93 0.00 0.00 -24.53 7.68 0.00 -23.97

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

p_init = <10,0,2> meters
p_target = <50,0,20> meters
v_init = 30 meters per second

Truncation Error
• Numerical simulation can be different from exact, closed-form

solution

– Difference primarily truncation error

• Truncation error can accumulate causing instability

– Ultimately produces floating point overflow

– Unstable simulations behave unpredictably (not same each time)

• Sometimes, truncation error can become zero

– In other words, produces exact, correct result

– For example, when zero force is applied or frictionless and constant force

• But, more often truncation error is non-zero. Control by:

– Select different numerical integrator (Vertlet, Runge-Kutta or others).
Typically, more state kept. Stable within bounds.

– Reduce time step, Dt (next slide)

29

Truncation Error Example

Trade-off: truncation error and computation interval
Guidelines? Step more often than frame rate (otherwise, no update!)
 Dt under 30 ms (20 ms a good choice)

Euler
• Error per step proportional to step

size squared
• Global error (error at given time)

proportional to step size
• (At lower limit, error goes to 0)

30

4/11/2016

6

Frame Rate Independence

• Complex numerical simulations used in physics
engines are sensitive to time steps (due to
truncation error and other numerical effects)

• But results need to be repeatable regardless of
CPU/GPU performance
– for debugging
– for game play

• So, if frame rate drops (game loop can’t keep up),
then physics will change

• Solution: Control physics simulation interval
independently of frame rate

31 32

Frame Rate Independence

start = ...
delta = 0.02 // physics simulation interval (sec)
lag = 0 // time since last simulated
previous = 0 // time of previous call to update

function update() { // in game loop
 now = getTime()
 t = (previous - start) – lag // previous simulate()
 lag = lag + (now - previous) // additional lag
 while (lag > delta) // repeat until caught up
 t = t + delta
 simulate(t) // note: kinematics. If dynamic, use delta
 lag = lag - delta
 previous = now // simulation caught up to current time
}

delta

frame updates

simulation ticks
lag

previous now

Outline

• Introduction (done)

• Kinematics (done)

• Rigid Body Simulation (done)

• The Firing Solution (next)

• Collision Detection

• Ragdoll Physics

• PhysX

33 34

The Firing Solution (1 of 3)

• How to hit target
– Beam weapon or high-velocity bullet over short

ranges can be viewed as traveling in straight line

– But projectile travels in parabolic arc
• Grenade, spear, catapult, etc.

d

d = ut + at2/2

u = velocity vector

a = [0, 0, -9.8] m/sec2

(but can use higher value, e.g., -18)

Most typical game situations, magnitude of u fixed. We only need
to know relative components (orientation) Challenge:

• Given d, solve for u

Remember Quadratic Equations?

• Make nice curves
– Like firing at target!

• Solutions are where equals 0. E.g.,
when firing with gun on ground:
– At gun muzzle
– At target

• But unlike in algebra class, not just
solving quadratic but finding angle
with y = gun, y = target

• Angle changes speed in x-direction,
but also time spent in air

• After hairy math [Millington 3.5.3], three
relevant cases:
– Target is out of range (no solution)
– Target is at exact maximum range

(single solution)
– Target is closer than maximum range

(two possible solutions)

• Solve with quadratic formula

35 36

The Firing Solution (2 of 3)

• Usually choose short time trajectory
– Gives target less time to escape
– Unless shooting over wall, etc.

u = muzzle velocity vector
d

long time trajectory

short time trajectory

u = (2Δ - at2) / (2 (muzzle_v) t)

where muzzle_v = max muzzle speed

 Δ is difference vector from d to u

 a is gravity

[Millington 3.5.3]

Project Firing

http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf

4/11/2016

7

function firingSolution (start, target, muzzle_v, gravity) {

 // Calculate vector back from target to start
 delta = target - start

 // Real-valued coefficents of quadratic equation
 a = gravity * gravity
 b = -4 * (gravity * delta + muzzle_v * muzzle_v)
 c = 4 * delta * delta

 // Check for no real solutions
 if (4 * a * c > b * b) return null

 // Find short and long times to target
 disc = sqrt (b * b - 4 * a *c)
 t1 = sqrt ((-b + disc) / (2 * a))
 t2 = sqrt ((-b - disc) / (2 * a))

 // Pick shortest valid time to target (ttt)
 if (t1 < 0) && (t2 < 0) return null // No valid times
 if (t1 < 0) ttt = t2 else
 if (t2 < 0) ttt = t1 else
 ttt = min (t1, t2)

 // Return firing vector
 return (2 * delta - gravity * ttt * ttt) / (2 * muzzle_v * ttt)
}

Note scalar product of two vectors using *:

[a,b,c] * [d,e,f] = a*d + b*e + c*f

37

The Firing Solution (3 of 3)

[Millington 3.5.3]

Note, a, b and c are scalars
so a normal square root.

Outline

• Introduction (done)

• Kinematics (done)

• Rigid Body Simulation (done)

• The Firing Solution (done)

• Collision Detection (next)

• Ragdoll Physics

• PhysX

38

Collision Detection

• Determining when objects collide is not as easy
as it seems
– Geometry can be complex
– Objects can be moving quickly
– There can be many objects

• naive algorithms are O(n2)

• Two basic approaches:
– Overlap testing

• Detects whether collision has already occurred

– Intersection testing
• Predicts whether collision will occur in future

39

Overlap Testing

• Most common technique used in games
• Exhibits more error than intersection testing
• Basic idea:

– at every simulation step, test every pair of objects to
see if overlap

• Easy for simple volumes (e.g., spheres), harder
for polygonal models

• Results of test:
– collision normal vector (useful for reaction)
– time that collision took place

40

Basics – discussed and
implemented in IMGD 3000!

41

Overlap Testing: Finding Collision Time

• Calculated by doing “binary search” in time, moving object
back and forth by 1/2 steps (bisections)

• In practice, five iterations usually enough

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375
t0.40625

BB B

A

A

A

A
A A

42

Limitations of Overlap Testing

• Fails with objects that move too fast (no overlap during
simulation time slice)

• Solution approach:
– constrain game design so that fastest object moves smaller distance in

one physics “tick” (delta) than thinnest object

– may require reducing simulation step size (adds computation
overhead)

t0t-1 t1 t2

bullet

window

http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf

4/11/2016

8

43

Intersection Testing
• Predict future collisions

• Extrude geometry in direction of movement
– e.g., “swept” sphere turns into capsule shape

• Then, see if extruded shape overlaps objects

• When collision found (predicted)
– Move simulation to time of collision (have collision point)

– Resolve collision

– Works for bullet/window example (bullet becomes line segment)

t0

t1

44

Speeding Up Collision Detection

• Bounding Volumes

– Oriented

– Hierarchical

• Partitioning

• Plane Sweep

45

Bounding Volumes
• Commonly used volumes

– sphere - distance between centers less than sum of radii

– boxes
axis aligned (loose fit, easier math)

oriented (tighter fit, more expensive)

• If bounding volumes don’t overlap, then no
more testing is required

– If overlap, more refined testing required

– Bounding volume alone may be good enough
for some games

Axis-Aligned Bounding Box Oriented Bounding Box

46

Complex Bounding Volumes

• Multiple volumes per object

– e.g., separate volumes for head, torso and limbs
of avatar object

• Hierarchical volumes

– e.g., boxes inside of boxes

[Gottschalk, Lin, Minocha, SIGGRAPH ’96]

47

Partitioning for Collision Testing
• To address the n2 problem...

• Partition space so only test objects in same cell

• In best case (uniform distribution) reduces n2 to linear
– Can happen for uniform size, density objects (e.g., cloth/fluids)

• In worst case (all objects in same cell) no improvement

48

Plane Sweep for Collision Testing
• Observation: many moveable objects stay in one place most of the

time

• Sort bounds along axes (expensive to do, so do just once!)

• Only adjacent sorted objects which overlap on all axes need to be
checked further

• Since many objects don’t move, can keep sort up to date very cheaply
with bubblesort (nearly linear)

C

B

R

A

x

y

A0 A1 R0 B0 R1 C0 C1B1

B0

B1

A1

A0

R1

R0

C1

C0

4/11/2016

9

Outline

• Introduction (done)

• Kinematics (done)

• Rigid Body Simulation (done)

• The Firing Solution (done)

• Collision Detection (done)

• Ragdoll Physics (next)

• PhysX

49

What is Ragdoll Physics?
• Procedural animation often

used as replacement for
traditional (static) death
animation
– Generated by code, not hand

– Using physics constraints on
body limbs & joints in real-
time

Still from early animation
using ragdoll physics

https://en.wikipedia.org/wiki/Ragdoll_physics

http://www.freeonlinegames.com/game/ragdoll-physics-2

Diablo 3 Ragdolls

Erin Catto

“How to Smack a Demon”

(Game Developer’s Conference, San
Francisco, California, USA, 2013)

Physics Programmer for Diablo 3 (Blizzard, 2012)

A ragdoll is a collection of collision
shapes connected to bones

https://en.wikipedia.org/wiki/Ragdoll_physics
https://en.wikipedia.org/wiki/Ragdoll_physics
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2

4/11/2016

10

Physics joints connect two bones

Cone Joint
(like shoulder)

Spherical Joint
(for chandeliers)

Revolute Joint
(like elbow)

Weld Joint
(locks two
bodies, for
advanced)

Tech artist connects bones with Physics joints

We use the ragdoll bodies to
adjust the pose

model space keyed animation world space ragdoll

Update the actor bounding sphere
using the bone transforms

actor transform

Partial ragdolls add flavor to
living characters

Not just for death and destruction

4/11/2016

11

More Physics We Are Not Covering

• Collision response

• Conservation of momentum

• Elastic collisions

• Non-elastic collisions – coefficient of
restitution

• Rigid body simulation (vs. point masses)

• Joints as constraints to motion

• Soft body simulation

62

[see excellent book by Millington, “Game Physics Engine Development”, MK, 2007]

Outline

• Introduction (done)

• Kinematics (done)

• Rigid Body Simulation (done)

• The Firing Solution (done)

• Collision Detection (done)

• Ragdoll Physics (done)

• PhysX (next)

63

PhysX Overview

• Developed by NVIDIA for C++ applications

• Windows, Mac, Linux, Playstation, Xbox,
Android, Apple iOS and Wii

• Simulate

– Fluids

– Soft bodies (cloth, hair)

– Rigid bodies (boxes, bones)

Why Does NVIDIA Make Physics Software?

• NVIDIA is mainly known as a developer and
manufacturer of graphics hardware (GPU’s)

• So taking advantage of GPU for hardware
acceleration of their physics engine

– Algorithms can be tuned to their hardware

– Giving a competitive advantage over other GPU
manufacturers

65

Configure Video Card as Dedicated
PhysX Processor

Dedicated
to PhyX

4/11/2016

12

What Algorithms Does PhysX Use?

• Hard to know exactly, because algorithm details
are NVIDIA’s intellectual property (IP)

• However from various forums and clues, it is
clear PhysX uses:
– Both sweep and overlap collision detection

– AABB and OBBT and (both axis-aligned and oriented
bounding bounding box trees)

– Constraints: hinges, springs, etc.

– and lots of other hairy stuff, see
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/

67

Rocket Sled

CES 2010, Rocket Sled demonstrates both graphics and
physics computing capabilities of new GF100 (Fermi) GPUs.

Raging Rapids Ride

Graphics ok, but with intensive and complex real-time fluid simulation

Havok Cloth

PhysX competitor bought by Microsoft

How to Use PhsyX

• General documentation NVIDIA® PhysX® SDK
Documentation

http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Index.html

• UE4 guide – PhysX, Integrating PhysX Code into
Your Project (by Rama)

https://wiki.unrealengine.com/PhysX,_Integrating_PhysX_Code_into_Your_Project

https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/
https://www.youtube.com/watch?feature=player_embedded&v=HjIzoGnkCZs
https://www.youtube.com/watch?feature=player_embedded&v=g5LkSYQG7o4
https://youtu.be/qTOzOgAdYWk
http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Index.html
https://wiki.unrealengine.com/PhysX,_Integrating_PhysX_Code_into_Your_Project

