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Basic Game Physics 

IMGD 4000 

With material from: Introduction to Game 
Development, Second Edition.  Edited by Steve 
Rabin. Cengage Learning, 2009. (Chapter 4.3) 

Introduction (1 of 2) 

• What is game physics? 

– Computing motion of objects in virtual scene 

• Including player avatars, NPC’s, inanimate objects 

– Computing mechanical interactions of objects 

• Interaction usually involves contact (collision) 

– Simulation must be real-time (versus high-
precision simulation for CAD/CAM, etc.) 

– Simulation may be very realistic, approximate, or 
intentionally distorted (for effect) 
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Introduction (2 of 2) 

• And why is it important? 

– Can improve immersion 

– Can support new gameplay elements 

– Becoming increasingly prominent (expected) part of 
high-end games 

– Like AI and graphics, facilitated by hardware 
developments (multi-core, GPU) 

– Maturation of physics engine market 
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Physics Engines 

• Similar buy vs. build analysis as game engines 
– Buy: 

• Complete solution from day one 
• Proven, robust code base (hopefully) 
• Feature sets are pre-defined 
• Costs range from free to expensive 

– Build: 
• Choose exactly features you want 
• Opportunity for more game-specification optimizations 
• Greater opportunity to innovate 
• Cost guaranteed to be expensive (unless features extremely 

minimal) 
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Physics Engines 

• Open source 
– Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue, 

PAL, Tokamak, Farseer, Physics2d, Glaze 

• Closed source (limited free distribution) 
– Newton Game Dynamics, Simple Physics Engine, True Axis, 

PhysX 

• Commercial 
– Havok, nV Physics, Vortex 

• Relation to Game Engines 
– Native, e.g,. C4 
– Integrated, e.g., UE4 + PhysX 
– Pluggable, e.g., C4 + PhysX,  jME + ODE (via jME Physics) 

 

Basic Game Physics Concepts 

• Why are we studying this? 
– To use an engine effectively, you need to understand 

something about what it’s doing 
– You may need to implement small features or 

extensions yourself 
– Cf., owning a car without understanding anything 

about how it works (possible, yes, but ideal?, no) 

• Examples 

– Kinematics and dynamics 

– Projectile motion 
– Collision detection and response 
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Outline 

• Introduction   (done) 

• Kinematics   (next) 

• Rigid Body Simulation 

• The Firing Solution 

• Collision Detection 

• Ragdoll Physics 

• PhysX 
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Kinematics (1 of 3) 

• Study of motion of objects without taking into 
account mass or force 

• Basic quantities:  position, time 

• ... and their derivatives: velocity, acceleration 

• Basic equations:        

1) d = vt 
2) v = u + at 
3) d = ut + ½at2 
4) v2 = u2 + 2ad 

 

Where:  
 t - (elapsed) time 
 d - distance (change in position)  
 v - (final) velocity (change in distance per unit time) 
 a - acceleration (change in velocity per unit time) 
 u - (initial) velocity 
 

Note, equation #3 is the integral of equation #2 with 
respect to time (see next slide). Equation #4 can be useful. 

Kinematics (2 of 3) 

d = ut 
Example: 
u = 20 m/s, t = 300 s 
d = 20 x 3000 = 6000 m 
 

d = ut + ½at2 
Example: 
u=0 m/s, a=4m/s2, t=3s 
d = 0x3 + 0.5x4x9 = 18m 
 

Non-accelerated motion Accelerated motion 
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Kinematics (3 of 3) 

Prediction Example:  If you throw a ball straight 
up into the air with an initial velocity of 10 
m/sec, how high will it go? 

 
  v2 = u2 + 2ad 
 
 u = 10 m/sec (initial speed upward) 
 a = -10 m/sec2 (approx gravity) 
 v = 0 m/sec (at top of flight)  
          0 = 102 + 2(-10)d 
          d = 5 meters 
 

(Note, answer independent of mass of ball!) 

v = 0 

u = 10 

d 

a = -10 
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Doing It In 3D 

• Mathematically, consider all quantities 
involving position to be vectors: 

            d = vt 
            v = u + at 
                   d = ut + at2/2 

• Computationally, using appropriate 3-element 
vector datatype 

 

Dynamics  

• Notice that preceding kinematic descriptions say 
nothing about why an object accelerates (or why 
its acceleration might change) 

• To get a full “modern” physical simulation you 
need to add two more basic concepts: 
– force  

– mass 

• Discovered by Sir Isaac Newton  

• Around 1700  
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Newton’s Laws 

1. A body will remain at rest or continue to 
move in a straight line at a constant speed 
unless acted upon by a force. 

2. The acceleration of a body is proportional to 
the resultant force acting on the body and is 
in the same direction as the resultant force. 

3. For every action, there is an equal and 
opposite reaction. 
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Motion Without Newton’s Laws 

• Pac-Man or early Mario style 
– Follow path with instantaneous changes in speed and 

direction (velocity) 

 

 

 

 

– Not physically possible 

• Note - fine for some casual games (especially 
with appropriate animations) 
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Newton’s Second Law 
F = ma  

At each moment in time:  

 F = force vector, in Newton’s 

 m = mass (intrinsic property of matter), in kg 

 a = acceleration vector, in m/sec2 

Player cares about state of world (position of objects). Equation 
is fundamental driver of all physics simulations.  

• Force causes acceleration  (a = F/m) 

• Acceleration causes change in velocity 

• Velocity causes change in position 
16 

How Are Forces Applied? 

• May involve contact 
– Collision (rebound) 
– Friction (rolling, sliding) 

• Without contact 
– Rockets/Muscles/Propellers 
– Gravity 
– Wind (if not modeling air particles) 
– Magic 

• Dynamic (force) modeling also used for 
autonomous steering behaviors 
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Computing Kinematics in Real Time 
start = getTime() // start time 

p = 0              // initial position 

u = 10             // initial velocity 

a = -10 

 

function update () {  // in game loop 

   now = getTime() 

   t = now – start 

   simulate(t) 

} 

 

function simulate (t) { 

   d = (u + (0.5 * a * t)) * t 

   move object to p + d  // move to loc. computed since start 

} 

d = ut + at2/2 

Note! Number of calls and time values to simulate() depend on (changing) 
game loop time (frame rate) 

Is this a problem?  It can be! For rigid body simulation with colliding forces and 
friction (e.g., many interesting cases) … 

u, p 

d 

a = -10 

Outline 

• Introduction   (done) 

• Kinematics   (done) 

• Rigid Body Simulation (next) 

• The Firing Solution 

• Collision Detection 

• Ragdoll Physics  

• PhysX 
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Rigid-Body Simulation 
• If no rotation, only gravity and occasional 

frictionless collision, basic Kinematic equations are 
fine 
– Closed form solution can be integrated  
  (e.g., d = ut + ½at2) 

• But in many games (and life!), interesting motion 
involves non-constant forces and collision impulse 
forces 
– Unfortunately, often no closed-form solutions 

• What to do?  Numerical simulation 

Numerical Simulation  techniques for incrementally solving equations of 
motion when forces applied to object are not constant, or when otherwise 
there is no closed-form solution 

19 

Numerical Simulation of Newtonian 
Equation of Motion (1 of 2) 

• Suppose know position (p), 
velocity (v) and acceleration 
(a) at time (ti) and frame time 
(∆t) 

• Want position at next frame 
time (ti+1) 
– Don’t know exactly how forces 

are affecting (wind, friction, 
gravity …) 

• Can compute: 
– pi+1 = si + vi * ∆t 

– vi+1 = vi + a * ∆t 

 

vs. 

What is this doing?  Instead of integrating a 
curve, sum over discrete time-slices 

• Family of numerical sim techniques called finite difference methods 
– Incremental “solution” to equations of motion 
– Most common for rigid-body dynamics simulation 

• Derived from Taylor series expansion of properties interested in 
 
 

S(t+Δt) = S(t) + Δt d/dt S(t) + (Δt)2/2! d2/dt S(t) + … 

 
• In general, not know values of any higher order.  Truncate, remove 

higher terms 
S(t+Δt) = S(t) + Δt d/dt S(t) + O(Δt)2 

– Can do beyond, but always higher terms 

– O(Δt)2 is called truncation error 
• Size is proportional to Δt (step size) 

• Can use to update properties (position) 
– Called “simple” or “explicit” Euler integration 

Numerical Simulation of Newtonian 
Equation of Motion (2 of 2) 

(Taylor series are used to estimate unknown functions) 

Explicit Euler Integration (1 of 2) 

• A “one-point” method since solve using 
properties at exactly one point in time, t, prior 
to update time, t+Δt 

– S(t+Δt) is only unknown value so can solve 
without solving system of simultaneous equations 

– Every term on right side is evaluated at t, right 
before new time t+Δt 

• View: S(t+Δt) = S(t) + Δt d/dt S(t) 

new state prior state state derivative 
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Explicit Euler Integration (2 of 2) 

• Write numerical integrator over arbitrary properties as change over 
time 

• For single particle, S = (mV, p) and d/dt S = (F, V) 
– Derivative of position (p) is velocity (V) 

• i.e., how position changes with respect to time 

– Derivative of momentum (mass m * V) is force (F) 
• i.e., how momentum changes with respect to time 

• Integrate state vector of length N 
  Vector ExplicitEuler(int N, Vector prior_S, Vector deriv_S, float delta_t)  
    Vector new_S[N]; 
    for (i=0; i<N; i++) 
       new_S[i] = prior_S[i] + delta_t * deriv_S[i]; 
    return new_S; 
 

• Note, for 3D, mV and p have 3 values each 
– S(t) = (m1V1,p1,m2V2,p2, …, mNVN,pN) 

– d/dt S(t) = (F1,V1,F2,V2, …,FN,VN) 
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Explicit Euler Integration Example (1 of 2) 

F=Weight = mg Vinit pinit 

Vinit = 30 m/s 

Launch angle: 75.2 degrees (all motion in xz plane) 
Mass of projectile, m: 2.5 kg 

tinit 

T im e p x p y p z m V x m V y m V z F x F y F z V x V y V z

5 .0 0 1 0 .0 0 0 .0 0 2 .0 0 1 9 .2 0 0 .0 0 7 2 .5 0 0 .0 0 0 .0 0 -2 4 .5 3 7 .6 8 0 .0 0 2 9 .0 0

V e lo c ity  (m /s )P o s it io n  (m ) L in e a r  M o m e n tu m  (k g -m /s ) F o rc e  (N )

mVinit 

S = <mVinit, pinit > dS/dt = <mg,Vinit> 

24 
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Explicit Euler Integration Example (2 of 2) 

Dt = .01 s Dt = .1 s 
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Pseudo Code for Numerical Integration (1 of 2) 

Vector cur_S[2*N];    // S(t+Δt) 
Vector prior_S[2*N];  // S(t) 
Vector S_deriv[2*N];  // d/dt S at time t 
float mass[N];        // mass of particles 
float t;              // simulation time t 
 
void main() { 
 float delta_t;     // time step 
 
 // Set current state to initial conditions 
 for (i=0; i<N; i++) { 
  mass[i] = mass of particle i; 
  cur_S[2*i] = particle i initial momentum; 
  cur_S[2*i+1] = particle i initial position; 
 } 
 
 // Game simulation/rendering loop 
 while (1) { 
  doPhysicsSimulationStep(delta_t); // update state of all particles 
  for (i=0; i<N; i++) { 
   render particle i at position cur_S[2*i+1]; 
  } 
 } 

26 

Pseudo Code for Numerical Integration (2 of 2) 

// Update state of all particles based on physics 
void doPhysicsSimulationStep(float delta_t) { 
 copy cur_S to prior_S; 
 
 // Calculate state derivative vector 
 for (i=0; i<N; i++) { 
  S_deriv[2*i] = CalcForce(i);           // could be just gravity 
  S_deriv[2*i+1] = prior_S[2*i]/mass[i]; // since S[2*i] is mV  divide by m 
 } 
 
 // Integrate equations of motion 
 ExplicitEuler(2*N, cur_S, prior_S, S_deriv, delta_t); 
 
 // By integrating, effectively moved  simulation time forward by delta_t 
 t = t + delta_t; 
} 
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Computing Position Over Time 
• Solution proceeds step-by-step, each time integrating from prior state 

0 .0 0

1 0 .0 0

2 0 .0 0

3 0 .0 0

4 0 .0 0

5 0 .0 0

0 .0 0 2 0 .0 0 4 0 .0 0 6 0 .0 0

H o r iz o n ta l P o s it io n  (m )

V
e

r
ti

c
a

l 
P

o
s

it
io

n
 (

m
) P ro je c t i le  L a u n c h

P o s it io n

Ta rg e t  P o s it io n

C lo s e d -F o rm

E x p lic it  E u le r

Time p x p y p z mV x mV y mV z F x F y F z V x V y V z

5.00 10.00 0.00 2.00 19.20 0.00 72.50 0.00 0.00 -24.53 7.68 0.00 29.00

5.20 11.54 0.00 7.80 19.20 0.00 67.60 0.00 0.00 -24.53 7.68 0.00 27.04

5.40 13.07 0.00 13.21 19.20 0.00 62.69 0.00 0.00 -24.53 7.68 0.00 25.08

5.60 14.61 0.00 18.22 19.20 0.00 57.79 0.00 0.00 -24.53 7.68 0.00 23.11

M M M M M
10.40 51.48 0.00 20.87 19.20 0.00 -59.93 0.00 0.00 -24.53 7.68 0.00 -23.97

Velocity (m/s)Position (m) Linear Momentum (kg-m/s) Force (N)

p_init = <10,0,2> meters 
p_target = <50,0,20> meters 
v_init = 30 meters per second 

Truncation Error 
• Numerical simulation can be different from exact, closed-form 

solution 

– Difference primarily truncation error 

• Truncation error can accumulate causing instability 

– Ultimately produces floating point overflow 

– Unstable simulations behave unpredictably (not same each time) 

• Sometimes, truncation error can become zero 

– In other words, produces exact, correct result 

– For example, when zero force is applied or frictionless and constant force 

• But, more often truncation error is non-zero. Control by: 

– Select different numerical integrator (Vertlet, Runge-Kutta or others).  
Typically, more state kept.  Stable within bounds. 

– Reduce time step, Dt (next slide) 
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Truncation Error Example 

Trade-off: truncation error and computation interval 
Guidelines?  Step more often than frame rate (otherwise, no update!) 
 Dt under 30 ms (20 ms a good choice) 

Euler 
• Error per step proportional to step 

size squared 
• Global error (error at given time) 

proportional to step size 
• (At lower limit, error goes to 0) 

30 
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Frame Rate Independence 

• Complex numerical simulations used in physics 
engines are sensitive to time steps (due to 
truncation error and other numerical effects) 

• But results need to be repeatable regardless of 
CPU/GPU performance 
– for debugging 
– for game play 

• So, if frame rate drops (game loop can’t keep up), 
then physics will change 

• Solution:  Control physics simulation interval                      
independently of frame rate 
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Frame Rate Independence 

start = ... 
delta = 0.02   // physics simulation interval (sec) 
lag = 0        // time since last simulated 
previous = 0   // time of previous call to update 
 
function update() { // in game loop 
     now = getTime() 
     t = (previous - start) – lag  // previous simulate() 
     lag = lag + (now - previous)  // additional lag 
     while ( lag > delta )    // repeat until caught up 
         t = t + delta 
         simulate(t)    // note: kinematics.  If dynamic, use delta 
         lag = lag - delta 
     previous = now              // simulation caught up to current time 
} 

delta 

frame updates 

simulation ticks 
lag 

previous now 

Outline 

• Introduction   (done) 

• Kinematics   (done) 

• Rigid Body Simulation (done) 

• The Firing Solution  (next) 

• Collision Detection 

• Ragdoll Physics 

• PhysX 
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The Firing Solution (1 of 3) 

• How to hit target  
– Beam weapon or high-velocity bullet over short 

ranges can be viewed as traveling in straight line 

– But projectile travels in parabolic arc 
• Grenade, spear, catapult, etc. 

d 

d = ut + at2/2 

u = velocity vector 

a = [0, 0, -9.8] m/sec2 

(but can use higher value, e.g., -18) 

Most typical game situations, magnitude of u fixed.  We only need 
to know relative components (orientation)   Challenge: 

• Given d, solve for u 

Remember Quadratic Equations? 

• Make nice curves 
– Like firing at target! 

• Solutions are where equals 0.  E.g., 
when firing with gun on ground: 
– At gun muzzle 
– At target 

• But unlike in algebra class, not just 
solving quadratic but finding angle 
with y = gun, y = target 

• Angle changes speed in x-direction, 
but also time spent in air 

• After hairy math [Millington 3.5.3],  three 
relevant cases: 
– Target is out of range (no solution) 
– Target is at exact maximum range 

(single solution) 
– Target is closer than maximum range 

(two possible solutions) 

• Solve with quadratic formula  

35 36 

The Firing Solution (2 of 3) 

• Usually choose short time trajectory 
– Gives target less time to escape 
– Unless shooting over wall, etc. 

u = muzzle velocity vector 
d 

long time trajectory 

short time trajectory 

u = (2Δ - at2) / (2 (muzzle_v) t) 

where muzzle_v = max muzzle speed 

 Δ is difference vector from d to u 

 a is gravity 

[Millington 3.5.3]  

Project Firing 

http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
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function firingSolution (start, target, muzzle_v, gravity) { 
 
   // Calculate vector back from target to start 
   delta = target - start 
 
   // Real-valued coefficents of quadratic equation 
   a = gravity * gravity 
   b = -4 * (gravity * delta + muzzle_v * muzzle_v) 
   c = 4 * delta * delta 
 
   // Check for no real solutions 
   if ( 4 * a * c > b * b ) return null 
 
   // Find short and long times to target 
   disc = sqrt (b * b - 4 * a *c) 
   t1 = sqrt ( ( -b + disc ) / (2 * a )) 
   t2 = sqrt ( ( -b - disc ) / (2 * a )) 
 
   // Pick shortest valid time to target (ttt) 
   if ( t1 < 0 ) && ( t2 < 0) return null  // No valid times 
   if ( t1 < 0 ) ttt = t2 else 
   if ( t2 < 0 ) ttt = t1 else 
   ttt = min ( t1, t2 ) 
    
   // Return firing vector 
   return ( 2 * delta - gravity * ttt * ttt ) / ( 2 * muzzle_v * ttt ) 
} 

Note scalar product of two vectors using *: 

[a,b,c] * [d,e,f] = a*d + b*e + c*f 

37 

The Firing Solution (3 of 3) 

[Millington 3.5.3]  

Note, a, b and c are scalars 
so a normal square root. 

Outline 

• Introduction   (done) 

• Kinematics   (done) 

• Rigid Body Simulation (done) 

• The Firing Solution  (done) 

• Collision Detection  (next) 

• Ragdoll Physics 

• PhysX 
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Collision Detection 

• Determining when objects collide is not as easy 
as it seems 
– Geometry can be complex 
– Objects can be moving quickly 
– There can be many objects 

• naive algorithms are O(n2)  

• Two basic approaches: 
– Overlap testing 

• Detects whether collision has already occurred 

– Intersection testing 
• Predicts whether collision will occur in future 

39 

Overlap Testing 

• Most common technique used in games 
• Exhibits more error than intersection testing 
• Basic idea: 

– at every simulation step, test every pair of objects to 
see if overlap 

• Easy for simple volumes (e.g., spheres), harder 
for polygonal models 

• Results of test: 
– collision normal vector (useful for reaction) 
– time that collision took place 

40 

Basics – discussed and 
implemented in IMGD 3000! 

41 

Overlap Testing: Finding Collision Time 

• Calculated by doing “binary search” in time, moving object 
back and forth by 1/2 steps (bisections) 

 

 

 

 

 

 

 

• In practice, five iterations usually enough 

B B

t1

t0.375

t0.25

B

t0

Iteration 1

Forward 1/2

Iteration 2

Backward 1/4

Iteration 3

Forward 1/8

Iteration 4

Forward 1/16

Iteration 5

Backward 1/32

Initial Overlap

Test

t0.5

t0.4375
t0.40625

BB B

A

A

A

A
A A

42 

Limitations of Overlap Testing 

• Fails with objects that move too fast (no overlap during 
simulation time slice) 

 

 

 

 

 

• Solution approach: 
– constrain game design so that fastest object moves smaller distance in 

one physics “tick” (delta) than thinnest object 

– may require reducing simulation step size (adds computation 
overhead) 

t0t-1 t1 t2

bullet

window

http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
http://web.cs.wpi.edu/~imgd4000/d15/slides/millington-3.5.pdf
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Intersection Testing 
• Predict future collisions 

• Extrude geometry in direction of movement 
– e.g., “swept” sphere turns into capsule shape 

 

 

 

 

 

• Then, see if extruded shape overlaps objects 

• When collision found (predicted) 
– Move simulation to time of collision (have collision point) 

– Resolve collision 

– Works for bullet/window example (bullet becomes line segment) 

t0

t1

44 

Speeding Up Collision Detection  

• Bounding Volumes 

– Oriented 

– Hierarchical 

• Partitioning 

• Plane Sweep 

45 

Bounding Volumes 
• Commonly used volumes 

– sphere - distance between centers less than sum of radii 

– boxes 
axis aligned (loose fit, easier math) 

oriented (tighter fit, more expensive) 

• If bounding volumes don’t overlap, then no 
more testing is required 

– If overlap, more refined testing required 

– Bounding volume alone may be good enough 
for some games 

 

Axis-Aligned Bounding Box Oriented Bounding Box

46 

Complex Bounding Volumes 

• Multiple volumes per object 

– e.g., separate volumes for head, torso and limbs 
of avatar object 

• Hierarchical volumes 

– e.g., boxes inside of boxes 

[Gottschalk, Lin, Minocha, SIGGRAPH ’96] 
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Partitioning for Collision Testing 
• To address the n2 problem... 

• Partition space so only test objects in same cell 

 

 

 

 

 

 

• In best case (uniform distribution) reduces n2 to linear 
– Can happen for uniform size, density objects (e.g., cloth/fluids) 

• In worst case (all objects in same cell) no improvement 
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Plane Sweep for Collision Testing 
• Observation: many moveable objects stay in one place most of the 

time 

• Sort bounds along axes (expensive to do, so do just once!) 

• Only adjacent sorted objects which overlap on all axes need to be 
checked further 

• Since many objects don’t move, can keep sort up to date very cheaply 
with bubblesort (nearly linear) 

C

B

R

A

x

y

A0 A1 R0 B0 R1 C0 C1B1

B0

B1

A1

A0

R1

R0

C1

C0



4/11/2016 

9 

Outline 

• Introduction   (done) 
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• PhysX 
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What is Ragdoll Physics? 
• Procedural animation often 

used as replacement for 
traditional (static) death 
animation 
– Generated by code, not hand 

– Using physics constraints on 
body limbs & joints  in real-
time 

Still from early animation 
using ragdoll physics 

https://en.wikipedia.org/wiki/Ragdoll_physics  

http://www.freeonlinegames.com/game/ragdoll-physics-2  

Diablo 3 Ragdolls 

Erin Catto 

“How to Smack a Demon” 

(Game Developer’s Conference, San 
Francisco, California, USA, 2013) 

Physics Programmer for Diablo 3 (Blizzard, 2012) 

A ragdoll is a collection of collision 
shapes connected to bones 

https://en.wikipedia.org/wiki/Ragdoll_physics
https://en.wikipedia.org/wiki/Ragdoll_physics
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
http://www.freeonlinegames.com/game/ragdoll-physics-2
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Physics joints connect two bones 

Cone Joint 
(like shoulder) 

Spherical Joint 
(for chandeliers) 

Revolute Joint 
(like elbow) 

Weld Joint 
(locks two 
bodies, for 
advanced) 

Tech artist connects bones with Physics joints 

We use the ragdoll bodies to 
adjust the pose 

model space keyed animation world space ragdoll 

Update the actor bounding sphere 
using the bone transforms 

actor transform 

Partial ragdolls add flavor to 
living characters 

Not just for death and destruction 
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More Physics We Are Not Covering 

• Collision response 

• Conservation of momentum 

• Elastic collisions 

• Non-elastic collisions – coefficient of 
restitution 

• Rigid body simulation (vs. point masses) 

• Joints as constraints to motion 

• Soft body simulation 

62 

[see excellent book by Millington, “Game Physics Engine Development”, MK, 2007] 

Outline 

• Introduction   (done) 

• Kinematics   (done) 

• Rigid Body Simulation (done) 

• The Firing Solution  (done) 

• Collision Detection  (done) 

• Ragdoll Physics   (done) 

• PhysX    (next) 

63 

PhysX Overview 

• Developed by NVIDIA for C++ applications 

• Windows, Mac, Linux, Playstation, Xbox, 
Android, Apple iOS and Wii 

• Simulate 

– Fluids 

– Soft bodies (cloth, hair) 

– Rigid bodies (boxes, bones) 

Why Does NVIDIA Make Physics Software? 

• NVIDIA is mainly known as a developer and 
manufacturer of graphics hardware (GPU’s) 
 

• So taking advantage of GPU for hardware 
acceleration of their physics engine 

– Algorithms can be tuned to their hardware 

– Giving a competitive advantage over other GPU 
manufacturers 

65 

Configure Video Card as Dedicated 
PhysX Processor 

Dedicated 
to PhyX 
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What Algorithms Does PhysX Use? 

• Hard to know exactly, because algorithm details 
are NVIDIA’s intellectual property (IP) 

• However from various forums and clues, it is 
clear PhysX uses: 
– Both sweep and overlap collision detection 

– AABB and OBBT and (both axis-aligned and oriented 
bounding bounding box trees) 

– Constraints: hinges, springs, etc. 

– and lots of other hairy stuff, see 
https://devtalk.nvidia.com/default/board/66/physx-and-physics-modeling/  
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Rocket Sled 

CES 2010, Rocket Sled demonstrates both graphics and 
physics computing capabilities of new GF100 (Fermi) GPUs. 

Raging Rapids Ride 

Graphics ok, but with intensive and complex real-time fluid simulation 

Havok Cloth 

PhysX competitor bought by Microsoft 

How to Use PhsyX 

• General documentation NVIDIA® PhysX® SDK 
Documentation 

http://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Index.html  

• UE4 guide – PhysX, Integrating PhysX Code into 
Your Project (by Rama) 

https://wiki.unrealengine.com/PhysX,_Integrating_PhysX_Code_into_Your_Project  
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