Ledure 19: Bodean
Algebra

» Basic Bodean Algebra
» Bodlean Functionsin Assembly

Bodean Algebra

» Two valued algebra

» Used to analyze the basic
elements that digital computers
are built from.

» A way of manipulating
true/false values.

Boodean Operations

» Basic operations:
— AND —trueiff both operands are true

— OR —trueif ether or both operands are
true

— NOT —truewhen its operandisfase
(inverts the operand)

» Other common operations:
— XOR —trueif inpus are diff erent
— NAND —inversion of AND
— NOR —inversion of OR

e 1=true, O0=fase

AND

* Truth table:

A AND B

>
w

PPk, OO
R ORFr O

A AND B can aso be represented as:
A-B
AB
A™B

OR

e Truth table:

A B AORB

PP OO
 ORFr O

A OR B can dso be represented as:
A+B
AvB

NOT

e Truth table:

A NOT A

0
1

NOT A can also be represented as:
A
A
-A
A

XOR (Exclusive OR)

e Truth table:

A B A XORB

PP OO
R ORFr O

A XOR B can aso berepresented as:

16 Possble Bodea
Functions of Two
Variables
* table from AoA, Chapter 2

| dentiti es of Bodean

Algebra
AND form OR form

Identity law 1A=A 0+A=A
Null law 0A=0 1+A=1
Idempotent law AA=A A+A=A
Inverse Law AA=0 A+A=1
Communative Law | AB=BA A+B=B+A
Assciative Law (AB)C= (A+B)+C=A

A(BC) +(B +C)
DistributiveLawv ~ |A+BC=(A+ |A(B+C)=AB+

B)(A +C) AC
Absorption Law AA+B)=A |A+AB=A

DeMorgan's Law

* proof of AND form of
distributive law using Truth
Tables (onthe board)

* proof of OR-form of
DeMorgan’'s Law using truth
tables (on baard)

GeneratingalLogic
Function from a Truth

Table
A BC M
00O 0
001 0
010 0
011 1
1 00 0
101 1
1 10 1
111 1

» Findall the mmbinations that result
inaone.

 Put them into an expresson:

Boolean Functionsin
AsEmbly

» Bodean functionsfall into the
caegory of bit-operations.

» What other bit operations have
we seen?

» For bodean functions, the
operations take place between
the individual bits of the two
operands.

AND

* AND performs a bitwise AND
operation between each hit of
the two operands and pdacesthe
result in the first operand.

* Formats:

AND reg, reg
AND reg, mem
AND reg, immed
AND mem, reg
AND mem, immed

AND, cont.

* AND can clea selected hitsin
an operand whil e preserving
(masking) the remaining bits.

mov al, 00111011b
and &, 00001111b ; a = 000QL011b

The00001111b iscdled abit mask, it
clearsthe upper four bitswhile
preserving the lower four bits.

AND Example

 Converting from lower case to upper
case.
» Upper case letters have bit 5 set
.data
char db ?;put uppercase |etter here
mask db (DFh ; 11011111b
.code
mov ah, 1
int 21h ;get the dhar into AL
and d, mask ;mask out bit 5
mov char, al ;store uppercase char

OR

¢ Performs abitwise OR operation
between each hit of the two operands
and places the result in the first
operand.

e Sameformatsas AND.

¢ ORisuseful for setting certain bits
to one whil e leaving the other bits
unchanged.
mov al, 00111011b ;3Bh
or a,000Q111b ;AL =3Fh

the lower four bits of the result are set, the
others remain urchanged.

OR Example

» Converting from upper case to
lower.

* When we onverted the other way,
we deaed bit 5. Now we need to set
it:

.data
char db ?;put lowercase |etter here
setb db 20h ; 00100000b

.code
mov ah, 1
int 21h ;get the dhar into AL
or al, seth;set bit 5
mov char, al :store lowercase char

Anather OR Example

;converting adedmal digit to ASCII

DIGIT DW 7
ASCBias DW 30h

MOV AX, DIGIT
OR AX, ASCBias

Chedking for Set Bits

e AND can be used to seeif abit
is &t inaword:
; test if bit 2 of BX = 0. If yes, jump
mov ax, bx ; saveorigina bx
and ax, 000h ; zero out all but bit 2
jz bit ;if zero (bit 2 zero), jJump
e Youcanaso usethe TEST
instruction: it does an AND but
doesn't load results (implied AND)
; test using TEST
TEST bx, 0004h ;BX not changed
Jz zbit ;but flags are set

NOT

e NOT reversesall the bitsin an
operand (takesthe 1's
complement).

e Formats:

—NOT reg
— NOT mem

mov al, 11110000b
not al :a =00001111b

NEG

* NEG reversesthesign of a
number by converting it to its
two’s complement.

¢ Formats:

—NEG reg
— NEG mem

mov al, +127 ; AL =01111111b
neg 4 ;AL =1000@01b

Overflow with NEG

* You can get overflow:

mov al, -128 ;AL = 1000®00b
neg a ;AL = 1000@00b,
JOF=1

XOR

* Performs a bit-by-bit exclusive
OR, puts the result in the first
operand.

mov al, 10110100b
xor al,10000110b ; al = 00110010b

e Commonly used to set aregister to
Zero:

XOR AX, AX ;same dfed asmov ax, 0

