
1

Lecture 19: Boolean
Algebra

• Basic Boolean Algebra

• Boolean Functions in Assembly

Boolean Algebra

• Two valued algebra

• Used to analyze the basic
elements that digital computers
are built from.

• A way of manipulating
true/false values.

Boolean Operations

• Basic operations:
– AND – true iff both operands are true

– OR – true if either or both operands are
true

– NOT – true when its operand is false
(inverts the operand)

• Other common operations:
– XOR – true if inputs are different

– NAND – inversion of AND

– NOR – inversion of OR

• 1 = true, 0 = false

AND

• Truth table:

A B

0 0
0 1
1 0
1 1

A AND B

A AND B can also be represented as:
A • B
AB
A ^ B

2

OR

• Truth table:

A B

0 0
0 1
1 0
1 1

A OR B

A OR B can also be represented as:
A + B
A v B

NOT

• Truth table:

A

0
1

NOT A

NOT A can also be represented as:�

A’
¬A
• A

XOR (Exclusive OR)

• Truth table:

A B

0 0
0 1
1 0
1 1

A XOR B

A XOR B can also be represented as:

16 Possible Boolean
Functions of Two

Variables
• table from AoA, Chapter 2

3

Identities of Boolean
Algebra

De Morgan’s Law

A + AB = AA(A + B) = AAbsorption Law

A(B + C) = AB +
AC

A + BC = (A +
B)(A + C)

Distributive Law

(A + B) + C = A
+ (B + C)

(AB)C =
A(BC)

Associative Law

A + B = B + AAB = BACommunative Law

A + � = 1A � = 0Inverse Law

A + A = AAA = AIdempotent law

1 + A = 10A = 0Null l aw

0 + A = A1A = AIdentity law

AND form OR form

• proof of AND form of
distributive law using Truth
Tables (on the board)

• proof of OR-form of
DeMorgan’s Law using truth
tables (on board)

Generating a Logic
Function from a Truth

Table

• Find all the combinations that result
in a one.

• Put them into an expression:

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

M

0
0
0
1
0
1
1
1

4

Boolean Functions in
Assembly

• Boolean functions fall i nto the
category of bit-operations.

• What other bit operations have
we seen?

• For boolean functions, the
operations take place between
the individual bits of the two
operands.

AND

• AND performs a bitwise AND
operation between each bit of
the two operands and places the
result in the first operand.

• Formats:
AND reg, reg

AND reg, mem

AND reg, immed

AND mem, reg

AND mem, immed

AND, cont.

• AND can clear selected bits in
an operand while preserving
(masking) the remaining bits.
mov al, 00111011b

and al, 00001111b ; al = 00001011b

The 00001111b is called a bit mask, it
clears the upper four bits while
preserving the lower four bits.

AND Example

• Converting from lower case to upper
case.

• Upper case letters have bit 5 set
.data

char db ?;put uppercase letter here

mask db 0DFh ; 11011111b

.code

mov ah, 1

int 21h ;get the char into AL

and al, mask ;mask out bit 5

mov char, al ;store uppercase char

5

OR

• Performs a bitwise OR operation
between each bit of the two operands
and places the result in the first
operand.

• Same formats as AND.

• OR is useful for setting certain bits
to one while leaving the other bits
unchanged.
mov al, 00111011b ;3Bh

or al, 00001111b ;AL = 3Fh

the lower four bits of the result are set, the
others remain unchanged.

OR Example

• Converting from upper case to
lower.

• When we converted the other way,
we cleared bit 5. Now we need to set
it:

.data
char db ?;put lowercase letter here
setb db 20h ; 00100000b

.code
mov ah, 1
int 21h ;get the char into AL
or al, setb;set bit 5
mov char, al ;store lowercase char

Another OR Example

;converting a decimal digit to ASCII

DIGIT DW 7

ASCBias DW 30h

….

MOV AX, DIGIT

OR AX, ASCBias

Checking for Set Bits

• AND can be used to see if a bit
is set in a word:
; test if bit 2 of BX = 0. If yes, jump
mov ax, bx ; save original bx
and ax, 0004h ; zero out all but bit 2
jz zbit ;if zero (bit 2 zero), jump

• You can also use the TEST
instruction: it does an AND but
doesn’ t load results (implied AND)
; test using TEST
TEST bx, 0004h ;BX not changed
JZ zbit ;but flags are set

6

NOT

• NOT reverses all the bits in an
operand (takes the 1’s
complement).

• Formats:
– NOT reg

– NOT mem

mov al, 11110000b

not al ;al = 00001111b

NEG

• NEG reverses the sign of a
number by converting it to its
two’s complement.

• Formats:
– NEG reg

– NEG mem

mov al, +127 ; AL = 01111111b

neg al ;AL = 10000001b

Overflow with NEG

• You can get overflow:

mov al, -128 ;AL = 10000000b

neg al ;AL = 10000000b,

;OF = 1

XOR

• Performs a bit-by-bit exclusive
OR, puts the result in the first
operand.
mov al, 10110100b

xor al, 10000110b ; al = 00110010b

• Commonly used to set a register to
zero:
XOR AX, AX ;same effect as mov ax, 0

