
1

Lecture 6: Machine
Code

• How to do Homework 2!!!!

Homework 2
• Two parts:

– Part 1: Use Debug to enter and
run a simple machine code
program

• convert input data into 2’s
complement hex

• enter data at the correct address

• enter program at the correct address

• run the program

– Part 2: Write a simple machine
code program, given pseudo-code

• these instructions should be similar
to those in the Part 1 problem.

• enter and run the resulting program.

Part I - Example Program
Given below is a machine code program that calculates the sum
of all the words in a given range of addresses in memory. The
code expects that the lower bound of this range is specified in the
BX register and the upper bound in the DX register. (BX holds
the offset of the beginning of the data to be summed from the
beginning of the data segment (DS). DX holds the offset of the
last data element from the beginning of the data segment.) The
sum gets stored in AX. The first 4 hex digits given on each line
below represent the offset of the instruction from the beginning
of the code segment. The digits after the dash are the machine
code instructions. To the right are English explanations of the
instructions.

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

Instruction Formats for
HW2

• jump format – jumping from one
location in the program to another

• indirect addressing – the source
operand is retrieved indirectly, i.e.
the operand is at the memory
location pointed to by BX

• register to register format – two
operands, both are registers

• immediate format – one operand is a
constant

2

immediate format

ITR (immediate-to-register) format
For two-operand instructions in which one of the operands is
a specified constant (Example: 83C302 instruction above).
Its general format is:

opcode
s w mod opcode reg immediate data

part 1 part 2

1 1 11

23-18 17 16 15-14 13-11 10-8 7-0

Theopcodefor the add instruction in ITR format is 100000 (part 1) and
000 (part 2).
Theopcodefor the subtract instruction in ITR format is 100000 (part 1)
and 101 (part 2).
Theopcodefor the compare instruction in ITR format is 100000 (part 1)
and 111 (part 2).

• Lets start by looking at our
program. Which instructions
are immediate form?

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

(actually, so are the last two, but those will always
look the same so we won’ t worry about them now)

83C302 add 2 to BX (to point to the next
word)

10000 0 11 11 000 011 0000 0010

1 0 0 0 0 s w mod 0 0 0 r/m data data if sw=01

• sw = 11 – 8 bits of immediate data (sign
extended to 16 when used)
• mod = 11 – r/m is treated as register field (reg)
and specifies which register the instruction uses
• r/m as register? Look on handout where it says
REG:

000 = AX
001 = CX
010 = DX
011 = BX
100 = SP…. etc.
r/m = 011 so our register = BX

• what’s left? Our one byte (8 bits) of data:
0000 0010 = 2

�
ADD: Immediate to register/memory

register to register
format

RTR (register-to-register) format

For two-operand instructions in which both the source and
destination operands are registers. (Example: 2BC0
instruction above). Its general format is:

opcode
d w mod dest reg src reg

(r/m)

1 1 11

15 - 10 9 8 7-6 5-3 2-0

Theopcode for the move instruction in RTR format is 100010.
Theopcode for the compare instruction in RTR format is
001110.
Theopcode for the subtract instruction in RTR format is
001010.

3

• Lets start by looking at our program
again. Which instructions are
register to register form? (look for
two registers and no indirection)

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

3BD3 compare BX to DX

0011 10 11 11 01 0011

0 0 1 1 1 0 d w mod reg r/m

�
CMP: Register/memory and register

• d = 1, “ to” register, d = 0, “ from” register
in our case, d = 1 so the reg field gives the
“ to” register

• w = 1 – 16 bit registers (AX, BX,…not AL,
BL)
• mod = 11 – r/m is treated as register field (reg)
• reg = 010 = DX (dest)
•r/m = 011 = BX (source)

(CMP does an “ implied subtract” of dest
(“ to”) - source (“ from”), and sets the
appropriate flags)

jump format

jump format

A two-byte instruction. The first byte designates
the condition on which to jump. (Example: 7D =
jump if greater than or equal, in the jump
instruction given in the example program. The
opcode7F means jump if greater than.) The
second byte (interpreted as an 8-bit two's
complement integer) gives the displacement of the
jump from the current value of the IP.

• Lets start by looking at our
program again. Which
instructions are in jump form?
(look for the word jump)

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

4

7DF7 if DX >= BX, then jump back to the
instruction at 0002

0111 1101 1111 0111

0 1 1 1 1 1 0 1 disp

�
JNL/JGE: Jump on not less/Jump greater or

equal
(we compared DX and BX in the previous
instruction and the jump uses the result of
the comparison)
• displacement gives the distance to add to the
IP in 2’s complement. In this case it’s 1111 0111
which is a negative number!

1111 0111 -> 0000 1000 + 1 = 0000 1001 = 9
-> jump back 9 memory locations

so where are we now? the jump instruction is at
9. But 9 – 9 = 0, not two!
reason: the IP is pointing to the next instruction,
which is at 000B. 000B – 0009 = 0002

•

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

when executing the instruction at 0009, the IP
is pointing to the next instruction to be executed:
the instruction at 000B.

So, 000B (the address in IP) – 0009 (the amount
to jump back (which just happens to be equal
to the address of the current instruction)
= 0002 (the address of thenext instruction to
execute.

indirect addressing

The move instruction in your program will use
indirect addressing to specify the source operand
(i.e. the operand will be at the memory location
pointed to by BX). Theopcodefor a move
instruction that uses indirection is 100010; it fits
into the RTR format given earlier, with mod
bits = 00. (Example: 0307 instruction).

• Lets start by looking at our program
again. Which instructions use
indirect addressing? (look for
instructions where the comments say
“pointed to”

0000 - 2BC0 subtract AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 - 83C302 add 2 to BX (to point to the next word)
0007 - 3BD3 compare BX to DX

(compare sets internal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002

000B - B8004C this instruction and the next one return
control to DOS

000E - CD21

5

0307 add the word pointed to by BX to AX

0000 0011 0000 0111

0 0 0 0 0 0 d w mod reg r/m

�
ADD: reg/memory with register to

either

• d = 1, reg field holds destination
•w = 1 – 16 bit registers (AX, BX,…not AL,
BL)
• mod = 00 – there are no displacement fields in
the instruction.
• reg = 000 = AX (dest)
•r/m = 111, EA = (BX) + Disp

EA = (BX) + Disp?
• EA = effective address – the address of the
word being added to AX
• (BX) = contents of BX
• Disp – an additional displacement field, 0 in
this instruction (mod = 00)

more on mod and r/m

• If mod = 11, then r/m is treated as a
REG field. This means, you look up
the r/m contents on the REG table.

• Otherwise, mod indicates if a
displacement is included in the
instruction.

• What’s a displacement? Part of the
effective address. You’ ll see more
on displacements when we cover
addressing modes.

• So mod is NOT 11, now what do we
do?

another example

?? move the word pointed to by BX to DX

1 0 0 0 1 0 d w mod reg r/m

�
MOV: reg/memory to/from register

(in the data transfer section)

• d = ? well, we’ re moving to DX, a register. So
d = 1.
•w = ? DX is a 16-bit register so w = 1
• mod = ? well, we are not copying data from a
register. Instead, we are copying data from a
location pointed to by a register.
• reg = ? well , we are moving the data into DX.
So, look up the code for DX – 010.
• r/m = ? there are a lot of choices!

look for it in the instruction set list

So which is it? Well, lets eliminate any that use
registers that are not in our instruction:
SI?
DI?
BP?
this leaves r/m = 111, EA = (BX) + DISP

1 0 0 0 1 0 d w mod reg r/m

�
MOV: reg/memory to/from register

(in the data transfer section)

?? move the word pointed to by BX to DX

r/m = 000, EA = (BX) + (SI) + DISP
r/m = 001, EA = (BX) + (DI) + DISP
r/m = 010, EA = (BP) + (SI) + DISP
r/m = 011, EA = (BP) + (DI) + DISP
r/m = 100, EA = (SI) + DISP
r/m = 101, EA = (DI) + DISP
r/m = 110, EA = (BP) + DISP (w/exception)
r/m = 111, EA = (BX) + DISP

6

1 0 0 0 1 0 d w mod reg r/m

?? move the word pointed to by BX to DX

d = 1 because desination is a register
w = 1 because it’s a 16-bit instruction
mod = 00 because there is no displacement
reg = 010 for DX
r/m = 111 for indirect addressing where the
address is stored in BX.

100010 1 1 00 010 111
1000 1011 0001 0111 (spacing for convenience)
= 8B17

Entering Data

• You’ ll need to do the following:
– Convert your data into hex.

Negative numbers are represented
in 2’s complement.

– Enter your data into memory at
the address specified in the
assignment.

– Remember, each integer will t ake
one word of storage (16 bits) and
the bytes are stored in reverse
order!

Entering data example

• Data: 26, 14, -92

• Address for data: 1C554H
(these are different from your

assignment!)

• Convert the data:
26 = 001A, 14 = 000E, -92 = FFA4

(negative numbers are in 2’s complement)

• Set the address: 1C554H
– data address will an offset from DS

(data segment register)

– DS = 1C55H, offset = 4h

(EA = 1C550 + 4 = 1C554H)

Entering Data (cont.)

• So, to enter the data at 1C554h
– set DS = 1C55h

– specify an offset of 4 when
entering data in Debug
(e ds:4)

– enter each byte of data,
remembering that for 16 bit
values they are stored low byte,
then high byte:

• 1A 00 0E 00 A4 FF

7

1A
00
0E
00
A4
FF

1C554
1C555
1C556
1C557
1C558
1C559

0004
0005
0006
0007
0008
0009

EA Offset from DSData

1C55DS

Entering the Program

• You’ re given the machine code for
the program in part 1.

• You’ ll need to put it at the correct
address.

• Address for program (different from
your homework):
1774Ch

• The code address will be an offset
from CS (code segment register)

• CS = 1774h, offset = Ch.
• So you’ ll set the CS register. Then

use the “e CS:C” command to enter
the code.

• You’ ll also need to set the IP to
000Ch

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

1774C
1774D
1774E
1774F
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
1775A
1775B

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

EA Offset from CSCode

1774CS

000CIP

1A
00
0E
00
A4
FF

1C554
1C555
1C556
1C557
1C558
1C559

0004
0005
0006
0007
0008
0009

EA Offset from DSData

1C55DS

The code expects that the lower bound of this range is
specified in the BX register and the upper bound in
the DX register. (BX holds the offset of the beginning
of the data to be summed from the beginning of the
data segment (DS). DX holds the offset of the last data
element from the beginning of the data segment.)

From the assignment:

BX

DX

8

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

000C

0004

0008

?

IP

BX

DX

AX

1774CS

1C55DS

While executing (before):
2BC0 subtract AX from itself

(to make it 0)

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

000E

0004

0008

0000

IP

BX

DX

AX

1774CS

1C55DS

After:
2BC0 subtract AX from itself

(to make it 0)

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0010

0004

0008

001A

IP

BX

DX

AX

1774CS

1C55DS

After:
0307 add the word pointed to

by BX to AX

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0013

0006

0008

001A

IP

BX

DX

AX

1774CS

1C55DS

After:
83C302 add 2 to BX (to

point to the next word)

9

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0015

0006

0008

001A

IP

BX

DX

AX

After:
3BD3 compare BX to DX

(sets flags) NV - no overflow
PL – positive
overflow = sign: jump

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

000E

0006

0008

001A

IP

BX

DX

AX

After:
7DF7 if DX >= BX, then jump
back 9 locationsoverflow = sign: jump

old IP = 0017,
subtract 9: 000E

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0010

0006

0008

0028

IP

BX

DX

AX

After:
0307 add the word pointed to

by BX to AX1A + 0E
= 28h

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0013

0008

0008

0028

IP

BX

DX

AX

After:
83C302 add 2 to BX (to

point to the next word)

10

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

000E

0008

0008

0028

IP

BX

DX

AX

After:
7DF7 if DX >= BX, then jump
back 9 locationsoverflow = sign: jump

old IP = 0017,
subtract 9: 000E

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0010

0008

0008

FFCC

IP

BX

DX

AX

After:
0307 add the word pointed to

by BX to AX28h + FFA4
= FFCCh

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0013

000A

0008

FFCC

IP

BX

DX

AX

After:
83C302 add 2 to BX (to

point to the next word)

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

0015

000A

0008

FFCC

IP

BX

DX

AX

After:
3BD3 compare BX to DX

(sets flags) NV – no overflow
NG - negative
overflow /= sign:
no jump!

11

1A
00
0E
00
A4
FF

0004
0005
0006
0007
0008
0009

Offset from
DSData

2B
C0
03
07
83
C3
02
3B
D3
7D
F7
B8
00
4C
CD
21

000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B

Offset
from CS Code

000E

000A

0008

FFCC

IP

BX

DX

AX

After:
7DF7 if DX >= BX, then jump
back 9 locations
Before:
B8004C copy 4C00h into AX

(you’ ll l earn about this later!)

overflow/ = sign:
do not jump!

Result

• At the end of the program (but prior
to the last two machine instructions),
AX holds the result: FFCCh

• This is a 2’s complement result. As
we learned earlier, if a 2’s
complement number has a 1 in the
left-most bit, it is negative.
FFCCh = 1111 1111 1100 1100
= - 0000 0000 0011 0011 + 1
= - 0000 0000 0011 0100
= - (2 **5 + 2 **4 + 4)
= - 52

• Is this correct?
26 + 14 – 92 = 40 – 92 = -52

(if the left-most bit of your answer was
zero, you would be able to simply
convert it to decimal with no
inverting)

Part 2?

• Very similar to part one, except you
need to figure out the machine code.

• Most of these instructions are similar
to those in part 1 and can be created
with minor modifications to the part
1 instructions.

• Read the assignment carefully to
make sure you are putting the
program and data in the correct
locations!

