Ledure 6: Madiine
Code

* How to doHomework 2!

Homework 2

* Two parts:

— Part 1: Use Debug to enter and
run asimple machine code
program

e convert inpu datainto 2's
complement hex

« enter data & the correct address

* enter program at the correct address

* runthe program

— Part 2: Write asimple machine

code program, given pseudo-code
« these instructions should be similar
tothasein the Part 1 problem.
« enter and run the resulting program.

Part | - Example Program

Given below is amachine mde program that cdculates the sum
of all the words in agiven range of addressesin memory. The
code expedsthat the lower bourd of thisrange is ecified in the
BX register and the upper bound in the DX register. (BX holds
the off set of the beginning of the datato be summed from the
beginning o the data segment (DS). DX holds the off set of the
|ast data dement from the beginning o the data segment.) The
sum gets dored in AX. Thefirst 4 hex digits given on ead line
below represent the off set of the instruction from the beginning
of the de segment. The digits after the dash are the machine
codeinstructions. To the right are Engli sh explanations of the
instructions.

0000 - 2BCO subtrad AX from itself (to make it 0)
0002 - 0307 add the word pointed to by BX to AX
0004 -83C302 add 2to BX (to point to the next word)
0007 - 3BD3 compare BX to DX
(compare setsinternal flags that are used by
subsequent jump instructions)
0009-7DF7 if DX >= BX, then jump bad to the
instruction at 0002
000B - B8004AC thisinstruction and the next one return
control to DOS
000E - CD21

Instruction Formats for
HW?2

* jump format — jumping from one
location in the program to another

* indired addressng — the source
operand isretrieved indiredly, i.e.
the operand is at the memory
location pointed to by BX

* register to register format —two
operands, both are registers

» immediate format — one operandisa
constant

immediate format

ITR (immediate-to-register) format
For two-operand instructions in which one of the operandsis
aspedfied constant (Example: 83C302 instruction above).
Its general format is:

opcode s | w | mod opcode | reg immediate data

part 1 part 2

2318 | 17|16 | 1514 1311 | 108 7-0

The opcode for the ald instruction in ITR format is 100000 (part 1) and
000 (part 2).

The opcode for the subtrad instruction in ITR format is 100000 (part 1)
and 101 (part 2).

The opcode for the mwmpare instruction in ITR format is 100000 (part 1)
and 111 (part 2).

* Lets dart by looking at our
program. Which instructions
areimmediate form?

0000- 2BCO subtrad AX from itself (to makeit 0)

0002 - 0307 add the word pointed to by BX to AX

0004 - 83C302 add 2 to BX (to point to the next wor d)

0007 - 3BD3 compare BX to DX
(compare setsinternal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump bad to the
instruction at 0002

000B - B8004C thisinstruction and the next one return
control to DOS

000E - CD21

(actually, so are thelast two, but those will always
look the same so we won’t worry about them now)

83C302 add 2 to BX (to point to the next
word)

10000 011 11000 011 0O 0010

[10000sw|mod 00 0r/m| data |dataif sw=01]

- ADD: Immediate to register/memory

e sw = 11-8 hits of immediate data (sign
extended to 16 when used)
emod =11-r/mistreaed asregister field (reg)
and specifies which register the instruction uses
* r/m asregister? Look on handout where it says
REG:

000=AX

001=CX

010=DX

011=BX

100=SP.... ec.

r/m=011s0 aur register = BX
« what'sleft? Our one byte (8 hits) of data:

00000010 =2

register to register
format

RTR (register-to-register) format

For two-operand instructions in which both the source and
destination operands are registers. (Example: 2BCO
instruction above). Its general format is:

opcode d|{w | mod | destreg | srcreg
(r/m)

111 11
15-10 |9 7-6 5-3 2-0

The opcode for the move instruction in RTR format is 100010.
The opcode for the compar e instruction in RTR format is
001110.

The opcode for the subtract instruction in RTR format is
001010.

¢ Lets dart by looking at our program
again. Which instructions are
register to register form? (look for
two registers and noindiredion)

0000 - 2BCO subtract AX from itself (to makeit 0)
0002 - 0307 add the word pointed to by BX to AX
0004 -83C302 add 2to BX (to point to the next word)
0007 - 3BD3 compareBX to DX
(compare setsinternal flags that are used by
subseguent jump instructions)
0009-7DF7 if DX >= BX, then jump bad to the
instruction at 0002
000B - B8004AC thisinstruction and the next one return
control to DOS
000E - CD21

3BD3 compareBX to DX
001110 1111010011
[001110dwmod reg /m |

->CMP: Register/memory and register

«d=1,"“to” register, d =0, “from” register
inour case, d = 1 so thereg field givesthe
“t0” register

*w =1-16 bt registers (AX, BX,...not AL,

BL)

*mod =11-r/mistreaed asregister field (reg)

*reg=010=DX (dest)

or/m=011=BX (source)

(CMP does an “implied subtrad” of dest
(“to") - source (“from”), and sets the
appropriate flags)

jump format

jump format

A two-byte instruction. The first byte designates
the condition on which to jump. (Example: 7D =
jump if greater than or equal, in the jump
instruction given in the example program. The
opcode 7F means jump if greder than.) The
second hyte (interpreted as an 8-bit two's

jump from the current value of the IP.

complement integer) gives the displacement of the

* Lets gart by looking at our
program again. Which
instructions are in jump form?
(look for the word jump)

0000- 2BCO subtrad AX from itself (to makeit 0)

0002 - 0307 add the word pointed to by BX to AX

0004 -83C302 add 2to BX (to point to the next word)

0007 - 3BD3 compare BX to DX
(compare setsinternal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump back tothe
instruction at 0002

000B - B8004C thisinstruction and the next one return
control to DOS

000E - CD21

7DF7 if DX >= BX, then jump back to the
instruction at 0002

0111 1101 1110111
[01111101 | disp |

- INL/JGE: Jump on not less/Jump greater or
equal

« (wecompared DX and BX in the previous
instruction and the jump uses the result of
the comparison)
» displacement givesthe distance to add to the
IPin 2'scomplement. Inthiscaseit’s1111 @11
which is a negative number!

1111 0111 -> 0000 1000 + 1 = 0000 1001 = 9
-> jump badk 9 memory locdions

so where aewenow? thejump instructionis at
9. But9-9=0, not two!

reason: the [P is pointing to the next instruction,
whichisat 000B. 000B — 0009 = 0002

0000 - 2BCO subtrad AX from itself (to makeit 0)
0002 - 0307 add theword pointed to by BX to AX
0004 -83C302 add 2to BX (to point to the next word)
0007 - 3BD3 compare BX to DX
(compare sets internal flags that are used by
subsequent jump instructions)
0009 - 7DF7 if DX >= BX, then jump back to the
instruction at 0002
000B - B8004C thisinstruction and the next one return
control to DOS
000E - CD21

when executing the instruction at 0009 the IP
is pointing to the next instruction to be executed:
theinstruction at 000B.

So, 000B (the addressin IP) — 0009(the amount
to jump back (which just happensto be eual

to the addressof the aurrent instruction)

= 0002 (the addressof the next instruction to
execute.

indired addressng

The move instruction in your program will use
indirect addressing to spedfy the source operand
(i.e the operand will be & the memory location
pointed to by BX). The opcode for amove
instruction that uses indiredion is 100010; it fits
into the RTR format given earlier, with mod

bits = 00. (Example: 0307instruction).

* Lets gart by looking at our program
again. Which instructions use
indired addressng? (look for
instructions where the cmomments say
“pointed to”

0000- 2BCO subtrad AX from itself (to makeit 0)

0002 - 0307 add theword pointed to by BX to AX

0004 -83C302 add 2to BX (to point to the next word)

0007 - 3BD3 compare BX to DX
(compare setsinternal flags that are used by
subsequent jump instructions)

0009 - 7DF7 if DX >= BX, then jump bad to the
instruction at 0002

000B - B8004C thisinstruction and the next one return
control to DOS

000E - CD21

0307 add theword pointed to by BX to AX

0000 0011 000111
[000000dw | modregrim |

->ADD: reg/memory with register to
either

«d=1, regfield holds destination

w =1-16 bt registers (AX, BX,...not AL,
BL)

» mod = 00 —there are no displacement fieldsin
theinstruction.

*reg =000=AX (dest)

er/m=111, EA = (BX) + Disp

EA = (BX) + Disp?

* EA = effedive address— the address of the
word being added to AX

* (BX) = contents of BX

* Disp — an additional displacement field, Oin
thisinstruction (mod = 00)

more on mod and r/m

e |f mod=11, then r/mistreated as a
REG field. Thismeans, youlook up
the r/m contents on the REG table.

» Otherwise, modindicatesif a
displacement isincluded in the
instruction.

* What'sadisplacement? Part of the
effedive aldress You'll seemore
on dsplacements when we aver
addressng modes.

* SomodisNOT 11, now what dowe
do?

another example

” move theword pointed to by BX to DX

look for it in the instruction set list

[100010dw | modregrim |

>MOV: reg/memory to/from register
(in the data transfer section)

«d="7? wdl, we're moving to DX, aregister. So
d=1.

w =?DX isal6-hit register sow =1

* mod = ?well, we are not copying datafrom a
register. Instead, we ae copying datafrom a
location pointed to by aregister.

* reg = ?well, we are moving the datainto DX.
So, look upthe code for DX —010.

*r/m="? there ae alot of choices!

?? move theword pointed to by BX to DX

[100010dw [modregrim |

—“>MOV: reg/memory to/from register
(in the data transfer section)

r/m =000, EA = (BX) + (Sl) + DISP

r/m =001, EA = (BX) + (DI) + DISP
r/m=010, EA = (BP) + (SI) + DISP
r/m=011, EA = (BP) + (DI) + DISP
r/m=100, EA = (Sl) + DISP

r/m=101, EA = (DI) + DISP

r/m =110 EA = (BP) + DISP (w/exception)
r/m=111, EA = (BX) + DISP

Sowhichisit? Well, lets eliminate any that use
registers that are not in our instruction:

SI?

DI?

BP?

thisleavesr/m = 111, EA = (BX) + DISP

?? move theword pointed to by BX to DX

[100010dw | modregrim |

d =1 because desination is aregister

w =1 becauseit’s a 16-bit instruction

mod = 00 kecause thereis no dsplacement
reg = 010for DX

r/m=111for indirect addressing where the
addressis dored in BX.

100010 1 100010 111
1000 1011 0001 Q111 (spadng for convenience)
=8B17

Entering Data

* You'll neal to dothe following:

— Convert your datainto hex.
Negative numbers are represented
in 2 s complement.

— Enter your datainto memory at
the address pecifiedin the
assgnment.

— Remember, ead integer will take
oneword of storage (16 kts) and
the bytes are stored in reverse
order!

Entering cata example

Data: 26, 14, -92
Addressfor data: 1C554H
(these are different from your
assgnment!)
Convert the data:
26=001A, 14 = 000E, -92 = FFA4
(negative numbersarein 2 s complement)
Set the address 1C554H

— data aldress will an offset from DS
(data segment register)

— DS=1C55H, offset = 4h

(EA = 1C550 + 4 = 1C554H)

Entering Data (cont.)

» S0, to enter the data & 1C554h

—set DS=1C55h

— spedfy an offset of 4 when
entering datain Debug

(e ds:4)

— enter ead byte of data,
remembering that for 16 ht
values they are stored low byte,
then high byte:

+ 1A 00 CE 00 A4 FF

1C554
1C555
1C556
1C557
1C558
1C559

Data Offset from DS
1A 0004
00 0005
OE 0006
00 0007
A4 0008
FF 0009

DS 1C55

Entering the Program

* You're given the machine code for
the program in part 1.

* You'll need to put it at the corred
address

» Addressfor program (different from
your homeworKk):

1774Ch

* The cmde aldresswill be an off set
from CS (code segment register)

e CS=1774h offset = Ch.

» Soyou'll set the CSregister. Then
usethe “e CS:C" command to enter
the code.

* You'll also need to set the IP to
000Ch

EA Code Offset from CS
1774C 2B 000C
1774D (6(0)] 000D
1774 03 000E
1774F 07 000F
17750 83 0010
17751 C3 0011
17752 02 0012
17753 3B 0013
17754 D3 0014
17755 7D 0015
17756 F7 0016
17757 B8 0017
17758 00 0018
17759 4C 0019
1775A CD 001A
1775B 21 001B

cs

IP 000C

From the assignment:

The code expects that the lower boundof thisrangeis
spedfied in the BX register and the upper boundin
the DX register. (BX holdsthe offset of the beginning
of the data to be summed from the beginning of the
data segment (DS). DX holdsthe offset of the last data|
element from the beginning of the data segment.)

EA Data Offset from DS
1C554 1A 0004
1C555 00 0005
1C556 OE 0006
1C557 00 0007
1C558 A4 0008
1C559 FF 0009
DS 1C55
2 —
px []

Off set Offset from
from CS Code Data DS
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
0014 D3
0015 7D P 000C
0016 E7
0017 B8
0019 4c DX 0008
001A cD
CS While executing (before):
2BCO subtrad AX from itself
DS 1C55 (to makeit 0)
Off set Off set from
fromcs Code bDaa pg
000C 2B
000D Co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
0015 = P 0010
0016 E7
0018 00
0019 aC DX
O0IA [cD AX 001A
001B 21
After:
0307 addtheword pointed to
CS 1774 by BX to AX
DS 1C55

Off set Off set from
from CS Code Data DS
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
oote —22
0015 - P 000E
0016 E7
0017 B8 BX 0004
0018 00
0019 4 DX
001A CD AX 0000
001B 21
After:
2BCO subtrad AX from itself
cs (to makeit 0)
DS 1C55
Off set Off set from
fromcs Code Daa pg
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
01s - IP 0013
0016 F7
0018 00
0019 ac DX
QOIA [cD AX 001A
001B 21
After:
83C302 add 2to BX (to
CS 1774 point to the next word)

DS 1C55

Off set

fromcs Code
0ooC 2B
000D co
000E 03
00OF 07
0010 83
0011 Cc3
0012 02
0013 3B
0014 D3
0015 7D
0016 E7
0017 B8
0018 00
0019 4C
001A CD
001B 21

Offset from
Data DS
1A 0004
00 0005
OE 0006
00 0007
A4 0008
FF 0009
IP 0015

BX

DX 00

oo
S
[esRNe)]

AX 001A

After:

NV - no overflow

3BD3 compare BX to DX

(setsflags)
PL — positive
overflow = sign: jump
Off set Off set from
fromcs Code bDaa pg
000C 2B
000D co 1A 0004
000E 03 00 0005
00O0F 07 OE 0006
0010 83 00 0007
o011 c3 A4 0008
0012 02 FF 0009
0013 3B
0015 = P 0010
0016 E7
0018 00
0019 aC DX
Q0IA [cD AX 0028
001B 21
After:
0307 addtheword pointed to
1A + OE by BX to AX

=28h

Off set Off set from
from CS Code Data DS
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 c3 Ad 0008
0012 02 FF 0009
0013 3B
0015 - P 000E
0016 E7
0017 B8 BX 0006
0018 00
0019 4 DX
OOIA [D AX | 001A
001B 21
After:
o 7DF7 if DX >=BX, then jump
overflow = sign: jump pad 9 1ocaions
old IP=0017,
subtraa 9: 000E
Off set Off set from
fromcs Code Daa pg
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 c3 Ad 0008
0012 02 FF 0009
0013 3B
o ap—bs
01s - IP 0013
0016 F7
0017 B8 BX 0008
0018 00
0019 ac DX
Q0IA T cD AX 0028
001B 21
After:

83C302 add 2to BX (to

point to the next word)

Off set Offset from

from CS Code Data DS
000C 2B
000D Co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
onns 22
0015 - IP 000E
0016 E7
0017 BS BX 0008
0019 4C
O0IA[_ cD AX 0028
001B 21

After:

L 7DF7 if DX >=BX, then jump
overflow = sign: jump pac 9 locations

old IP=0017,
subtrad 9: 000E
Off set Offset from
fromcs Code Daa pg
000C 2B
000D Co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
oote 22
0015 = IP 0013
0016 E7
0017 B8 BX 000A
0018 00
0019 4C DX 0008
001A CcD
0018 51 AX FFCC
After:

83C302 add 2to BX (to
point to the next word)

Off set Off set from
from CS Code Data DS
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 c3 A4 0008
0012 02 FF 0009
0013 3B
0015 - P 0010
0016 E7
0017 B8 BX 0008
0018 00
0019 4 DX
OOIA[cD AX [FFcc
001B 21

After:

0307 addtheword pointed to
28h+ FFA4 by BX to AX
=FFCCh

Off set Off set from
fromcs Code Daa pg
000C 2B
000D co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 c3 A4 0008
0012 02 FF 0009
0013 3B
01s - IP 0015
0016 F7
0017 B8 BX 000A
0018 00
0019 AC DX 0008
001A CcD
001B ” AX FFCC
After:
3BD3 compare BX to DX
NV —no overflow (setsflags)
NG - negative
overflow /= sign:
no jump!

10

Off set Offset from

from CS Code Data DS
000C 2B
000D Co 1A 0004
000E 03 00 0005
000F 07 OE 0006
0010 83 00 0007
0011 C3 A4 0008
0012 02 FF 0009
0013 3B
oots [—22
0015 X IP 000E
0016 E7
0017 B8
0018 00 BX 000A
0019 4C
hopt o DX 0008
001B 21 AX FFCC
After:

. 7DF7 if DX >=BX, then jump
overflow/ = sign: badk 9 locations
do not jump! Before:

B80MC copy 4C00hinto AX
(you'll lean about this later!)

Result

» At the end of the program (but prior
to the last two machine instructions),
AX hddstheresult: FFCCh

* Thisisa 2’ scomplement result. As
we leaned earlier, if a2's
complement number hasa 1 in the
left-mogt bit, it is negative.

FFCCh = 11111111 1100 1100
=-000000000011 0011+ 1
=-00000000 0011 0100
=-(2**5+2**4 + 4)

=-52

* |Isthiscorred?

26+14-92=40-92=-52

(if the left-most bit of your answer was
zero, youwould be aleto simply
convert it to decimal with no
inverting)

Part 2?

e Very similar to part one, except you
need to figure out the machine cde.

¢ Most of these ingtructions are similar
tothosein part 1 and can be creded
with minor modifications to the part
linstructions.

¢ Real the assignment carefully to
make sure you are putting the
program and data in the corred
locations!

11

