
1

Lecture 8: Control
Structures

• CMP Instruction

• Conditional Jumps

• High Level Logic Structures

Comparing Values

• The CMP instruction performs a
comparison between two
numbers using an implied
subtraction. This means that the
flags (in the flags register) are
set to show the result of a
subtraction but the numbers
subtracted do not change.

Example

• CMP DX, BX ; compare from HW2

When BX = 0004 and DX = 0008,
DX – BX = 0004 (remember – implied)
NV - no overflow
PL – positive

When BX = 000A and DX = 0008,
DX – BX = FFFE (- 2)
NV - no overflow
NG – negative

Flags Set by CMP

• tables from 6.1.10 in Irvine

2

CMP Examples

• AX = 10, BX = -12 (decimal)
• CMP AX, BX

AX – BX = +22
PL (positive), CY (carry), NV (no

overflow), NZ (not zero)

• CMP BX, AX
BX – AX = -22
NG (negative), NC (no carry), NV (no

overflow), NZ (not zero)

• CMP AX, AX
AX – AX = 0
PL (positive), NC (no carry), NV (no

overflow), ZR (zero)

What can we compare?

• register to register:
– CMP AX, BX

• register to memory:
– CMP AX, mval

• register to immediate:
– CMP AX, 42

• memory to register:
– CMP mval, AX

• memory to immediate (!)
– CMP mval, 42

What can’ t we compare?

• You can not compare memory
to memory!!!

• One value wil l need to be
copied into a register prior to
the CMP instruction.

Why is this Useful?

• CMP is generally followed by a
conditional jump statement to
create an If statement:
CMP dest, src ;sets flags

Jxxx label ;jumps based on flags

3

Conditional Jumps

• Conditional jumps are used to jump
to another location based on the
settings in the flags register.

• The numbers you are comparing can
represent signed or unsigned values.
Different flags will be checked
depending on which interpretation
you are using.

• How does the CPU know how you
are interpreting the numbers?
– It knows by your choice of jump

instruction!

General Comparison
Jumps

• Irvine, Ch 6, table 4

• These are the same for signed and
unsigned

Unsigned Comparison
Jumps

• Irvine, Ch 6, table 5

• Unsigned jumps refer to “above and
“below”

Signed Comparison
Jumps

• Irvine, Ch 6, Table 6

• Signed jumps refer to “greater” and
“ less”

4

Signed vs. Unsigned
. data

tot al dw 0FFFFh

; j ump i f t ot al < 10 (s i gned)

CMP tot al, 10

JL les s10 ; j ump to t al < 10

…

les s10:

FFFFh = -1, so code will j ump to less10 since –1 < 10.

;ju mp i f t ota l < 10 (unsign ed)

CMP t ot al, 10

JB l es s10 ; ju mp t ota l < 10

….

les s10:

This code will not jump to less10 because FFFFh
unsigned = 65535 > 10.

How does assembler know if FFFFh is –1 or 65,535?
You tell it by your choice of jump instruction!

Using Conditional
Jumps

• As shown earlier, the relation
expressed by the jump
instruction refers to the two
operands from a previous CMP.

• Conditional jumps are usually
used directly after a CMP.

• Why usually? Well , you could
use a jump based on the result
of an arithmetic operation.

Example

CMP DX, BX ; compare from HW2
JGE add_lup ; jump to top of loop

When BX = 0004 and DX = 0008,
DX – BX = 0004 (remember – implied)
NV - no overflow (0)
PL – positive (0)
overflow matches sign – jumps back to

top of loop: DX >= BX

When BX = 000A and DX = 0008,
DX – BX = FFFE (- 2)
NV - no overflow (0)
NG – negative (1)
overflow <> sign – does not jump:
DX < BX

High Level Logic
Structures

• So what are some of the control
structures in high level
programming languages?
– if
– do-while
– repeat-until
– case
– …..

• These can be implemented in
assembly using CMP and
conditional Jump

5

If Statement

if (op1 = op2) then
<statement1>
<statement2>

end if

In assembler (still pseudo-code!):
cmp op1, op2
jne false
<statement1>
<statement2>

false: <rest of program>

If Statement Example

.data
op1 db 10
op2 db –12
op3 db ?

.code
mov al, op1 ;why?
cmp al, op2 ; op1 = op2?
jne noteq ; if no, jump
mov bl, op2 ;statement 1
mov op3, bl ;statement 2

noteq: add al, op2

If-then-Else
if (temp > max) then

max = temp
else

max = max + 1
endif

In Assembly:

mov ax, temp
mov bx, max
cmp ax, bx ;compare temp to max

;” if”
jle els ;jump if temp <= max
mov max, ax ;temp > max “ then”
jmp done ;unconditional jump

els: inc bx ; temp <= max “else”
mov max, bx

done:

Compound If Using OR

• Examples from Irvine, 6.4.2

6

Compound IF Using
AND

• more examples from Irvine
6.4.2

Another example (this
time: unsigned)

if ((ax < 10) and (bx < 10)) then

assign 1 to CX register

else

assign 0 to CX register

end if

In assembly:
cmp ax, 1 0

j ae el s ; j ump a x >= 10

cmp bx, 1 0 ; a x < 1 0

j ae el s ; j ump bx >= 10

mov cx, 1 ; ax < 1 0 an d bx < 1 0

j mp done

el s: mov cx, 0 ; ax > = 1 0 or bx >=10

done:

With AND – negate the conditions you test for!

Do-While
do

ax = ax + 1
cx = ax

while ((ax < bx) AND (cx == dx))

In assembly:
to p: i nc ax ; ax = a x + 1

mov cx, a x ; cx = a x
cmp ax, bx
ja e done ; ax > =bx done
cmp cx, dx
j ne done ; cx <> dx: done

j mp t op
done:

The condition that brings you back to the top is (AX <
BX) AND (CX == DX).

You want to exit from the loop when AX >= BX or
CX <> DX)

Case Statement

Examples in Irvine, 6.4.5

