
U
niversity

of
A

rizona

C
S
c

453
C

om
pilers

and
System

s
Softw

are

C
hristian

C
ollberg

Septem
ber

29,
2002

S
em

antic
A

n
alysis

I

C
o
p
y
rig

h
t

c©
2
0
0
2

C
.
C

o
llb

erg

'&

$%
Compiler Phases

AST

asm

Semantic
Analyser

Interm.
Code Gen

IR

Machine
Code Gen

IR AST

Lexer

tokens

source

errors

errors

Parser

errors

Optimize

We are here!

S
lid

e
9
–
1

'&

$%

Semantic Analysis

• The parser returns an abstract syntax tree (AST), a

structured representation of the input program. All

information present in the input program (except maybe for

comments) is also present in the AST.

• Literals (integer/real/. . . constants) and identifiers are

available as AST input attributes.

• During semantic analysis we add new attributes to the AST,

and traverse the tree to evaluate these attributes and emit

error messages.

• At compiler construction time we have to decide which

attributes are needed, how they should be evaluated, and

the order in which they should be evaluated.

S
lid

e
9
–
2

'&

$%

Why Semantic Analysis?

1. Is the program statically correct? If not, report errors to

user:

• “undeclared variable”

• “illegal procedure parameter”

• “type incompatibility”

2. Make preparations for later compiler phases (code

generation and optimization):

• Compute types of variables.

• Compute addresses of variables.

• Store transfer modes of procedure parameters.

• Compute labels for control structures (maybe).

S
lid

e
9
–
3

'&

$%

Typical Semantic Errors

....

procedure P (

begin

end;
y := "x"

x,y : integer);
var z,x : char;

var k : P;
var z : R;
type R = array [9..7] of char;

end Y. ”wrong closing identifier”

”multiple declaration”

”type mismatch”

”type name expected”

”identifier not declared”

program X;

var x,y,t : integer;

begin
”empty range”

S
lid

e
9
–
4

'&

$%
....

y : t := 5 |
3+2 : t := 9 |
1+4 : t := 8

case x of

end

”too few parameters”begin

P(1);

P(1,2,3);

P("x",2);

R[5] := "x";

z["x"] := 5;

”repeated case labels”

”boolean expression expected”

if x then t := 4;
end Y.

”too many parameters”

”integer type expected”

”variable expected”

”type mismatch”

”constant expected”

program X;

S
lid

e
9
–
5

'&

$%

Static Semantic Rules

Static Semantics: ≈ type checking rules. The rules that are

checked by the compiler before execution.

Dynamic Semantics: Rules that can only be checked when

the program is run. Example: ”pointer reference to NIL”.

Context Conditions: Static semantic rules.

• Obviously, different languages have different static semantic

rules. Ada, for example, allows null ranges (e.g.

array [9..7] of char), while Modula-2 doesn’t.

• It’s our job as compiler writers to read the language

definition and encode the rules in our semantic analyzer.

S
lid

e
9
–
6

'&

$%

Kinds of Context Conditions

Type Checks We must check that every operator used in the

program takes arguments of the correct type.

Kind Checks We must check that the right kind of identifier

(procedure, variable, type, label, constant, exception) is used

in the right place.

Flow-of-control Checks In Modula-2 an EXIT- statement

must only occur within a LOOP-statement:

LOOP IF · · · THEN EXIT ENDIF; END

Uniqueness Checks Sometimes a name must be defined

exactly once. Example: variable declarations, case labels.

Name Checks Sometimes a name must occur more than once,

e.g. at the beginning and end of a procedure.

S
lid

e
9
–
7

'&

$%

Tree-Walk Evaluators

Static Semantic Rules are Confusing!

• Check out any C++ manual...

• Ada’s semantic rules are so unwieldy that compiler
error messages often contain references to the relevant
sub-sub-section of the Ada Reference Manual (ARM):
”Type error. See ARM section 13.2.4.”

• We must organize the semantic analysis phase in a
systematic way.

S
lid

e
9–8

'&

$%
Tree-Walk Evaluators. . .

• The syntax analyzer produces an Abstract Syntax
Tree (AST), a structured representation of the input
program.

• Each node in the tree has a number of variables called
attributes.

• We write a program that traverses the tree (one of
more times) and assigns values to the attributes.

S
lid

e
9–9

'&

$%

Tree-Walk Evaluators. . .

Attributes

• Some attributes are given values by the parser. They are

called input attributes.

• The attributes can store whatever we like, e.g. the types of

expressions.

Context Conditions

• The context conditions are encoded as tests on the values of

attributes (node.type is the type attribute of node,

node.pos the line number in the source code):

if node.type 6= "integer" then

print "Integer expected at " node.pos

S
lid

e
9
–
1
0

'&

$%

Tree-Walk Evaluation

IF a<10 THEN

ENDIF;

c := 1;

EXPR THEN ELSE

IF

The AST after
parsing

Semantic
Analysis

Parsing

Source program

Input
Attributes

LOP ROP

BinaryOp:<

Des Expr

Val: 1Id: "c"Val: 10Id: "a"

INTEGERIDENTINTEGERIDENT

ASSIGN

S
lid

e
9–11

'&

$%

Tree-Walk Evaluation. . .

EXPR THEN ELSE

IF

LOP ROP

Type:BinaryOp:<

bool

IDENT

Id: "a"

Type:int Type:

INTEGER

Val: 10

int Type:

INTEGER

Val: 1

int

Des Expr

ASSIGN Type:

The AST after
semantic analysis

Possible
type error?!

Tree
Traversal
Order

Semantic
Analysis

char

IDENT

Id: "c"

Type:

real

S
lid

e
9–12

'&

$%
Tree Traversal

• A tree-walker is a number of procedures that take a
node as argument. They start by processing the root of
the tree and then work their way down, recursively.

• Often we will have one procedure for each major
node-kind, i.e one for declarations, one for statements,
one for expressions. Notation:

n.Kind is n’s node type, for example IfStat,
Assignment, etc.;

n.C is n’s child C, for example n.expr, n.left, etc.;

n.A is n’s attribute A, for example n.type, n.value,
etc.

S
lid

e
9–13

'&

$%

Tree Traversal. . .

• Each time we visit a node n we can

1. Evaluate some of n’s attributes.

2. Print a semantic error message.

3. Visit some of n’s children.

PROCEDURE Stat(n : Node);

IF n.Kind = Assign THEN

Expr(n.Des); Expr(n.Expr);

ELSIF n.Kind = IfElse THEN

Expr(n.Expr);Stat(n.Stat1);Stat(n.Stat2);

ENDIF

END Stat;

S
lid

e
9
–
1
4

'&

$%

Tree Traversal. . .

PROCEDURE Expr(n : Node);

IF n.Kind = BinOp THEN

Expr(n.LOP);

Expr(n.ROP);

ELSIF n.Kind=Name THEN

(* Process n.Name *)

ELSIF n.Kind=IntCont THEN

(* Process n.Value *)

ENDIF

END Expr;

S
lid

e
9
–
1
5

'&

$%

Constant Expressions

• In many languages there are special constructs where only

constant expressions may occur.

• For example, in Modula-2 you can write

CONST C = 15;

TYPE A = ARRAY [5..C*6] OF CHAR;

but not

VAR C : INTEGER;

TYPE A = ARRAY [5..C] OF CHAR;

i.e. the upper bound of an array index must be constant

(value known at compile time).

S
lid

e
9
–
1
6

'&

$%
Constant Expressions. . .

• Constant declarations can depend on other constant

declarations:

CONST C1 = 15;

CONST C2 = C1 * 6;

TYPE A = ARRAY [5..C2] OF CHAR;

• Write a tree-walk evaluator that evaluates constant integer

expressions.

• IntConst has an input attribute Value. We mark input

attributes with a ⇐ in the abstract syntax.

• Each node is given an attribute Val.

• Val moves up the tree, so we mark it with a ⇑ in the

abstract syntax.

S
lid

e
9
–
1
7

'&

$%

Constant Expressions. . .

Concrete Syntax:

Expr ::= Add | Mul | IntConst

Add ::= Expr + Expr

Mul ::= Expr * Expr

IntConst ::= number

Abstract Syntax:

Expr ::= Add | Mul | IntConst

Add ::= LOP:Expr ROP:Expr ⇑Val:INTEGER

Mul ::= LOP:Expr ROP:Expr ⇑Val:INTEGER

IntConst ::= ⇐Value:INTEGER ⇑Val:INTEGER

S
lid

e
9–18

'&

$%

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN

Expr(n.LOP); Expr(n.ROP);

n.Val := n.LOP.Val + n.ROP.Val;

ELSIF n.Kind = Mul THEN

Expr(n.LOP); Expr(n.ROP);

n.Val := n.LOP.Val * n.ROP.Val;

ELSIF n.Kind = IntConst THEN

n.Val := n.Value;

ENDIF

END;

• n.LOP.Val has been evaluated after Expr(n.LOP) has

returned.

• n.LOP.Val is the value of of n’s left child’s Val attribute.

S
lid

e
9
–
1
9

'&

$%

Constant Expressions. . .

The AST
after
parsing

The AST
after the
tree-walk

Value=5

IntConst

Value=7

IntConst

Value=9

Val=3

IntConst

Value=7

Val=7

IntConst

Value=5

Val=5

IntConst

Val=12

Val=36

Add

Mul

Val=

Mul

Add
Value=9

IntConst

S
lid

e
9
–
2
0

'&

$%
Constant Declarations

• Let’s extend this exercise to handle Modula-2 style
constant declarations:

CONST C1 = 15;

CONST C2 = C1 * 6;

TYPE A = ARRAY [5..C2] OF CHAR;

• We assume there is a magic function Lookup(ID) that
returns TRUE if ID is a constant identifier, and a
function GetValue(ID) which returns the value of this
constant.

S
lid

e
9–21

'&

$%

Concrete Syntax:

ConstDecl ::= CONST Ident = Expr

Expr ::= Expr + Expr | Ident | IntConst

IntConst ::= number

Ident ::= name

Abstract Syntax:

ConstDecl ::= ID:Ident EXPR:Expr

Expr ::= Add | IntConst | Ident

Add ::= LOP:Expr ROP:Expr ⇑Val:INTEGER

⇑IsConst:BOOLEAN

IntConst ::= ⇐Value:INTEGER ⇑Val:INTEGER

⇑IsConst:BOOLEAN

Ident ::= ⇐ID:String ⇑IsConst:BOOLEAN

S
lid

e
9
–
2
2

'&

$%

PROCEDURE ConstDecl (n: Node);

Expr(n.EXPR);

IF NOT n.EXPR.IsConst THEN

PRINT "Constant expr. expected."

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN

Expr(n.LOP); Expr(n.ROP);

n.Val := n.LOP.Val + n.ROP.Val;

n.IsConst := n.LOP.IsConst AND n.ROP.IsConst;

ELSIF n.Kind = IntConst THEN

n.Val := n.Value; n.IsConst := TRUE;

ELSIF n.Kind = Ident THEN

n.IsConst := Lookup(n.ID); n.Val := GetValue(n.ID);

ENDIF

S
lid

e
9
–
2
3

'&

$%

Constant Declarations. . .

IsConst=FALSE

ID="C"

VAR x:INTEGER;
CONST C = 45+X;

Source

ID="C"

IsConst=TRUE

Ident

ID="X"

Val=?

IntConst

Value=45 ID="X"

Ident

ConstDecl

Expr

Add

ConstDecl

Expr

IsConst=FALSE

Add

Val=?

IntConst

Value=45

Val=45

S
lid

e
9
–
2
4

'&

$%
Type Checking Assignments

• Write a tree-walker that type checks assignments in Pascal:

var i : integer; var r : real; var c : char;

begin

i := 34;

i := i + 2;

r := 3.4;

r := 3.4 + i; (* OK, automatic conversion. *)

i := r; (* Illegal. *)

i := c; (* Illegal. *)

end.

• Assume a function lookup that returns the type of an

identifier.

S
lid

e
9
–
2
5

'&

$%

Concrete Syntax:

Assign ::= Expr := Expr

Expr ::= Expr + Expr | name | integer | real | char

Abstract Syntax:

Assign ::= Left:Expr Right:Expr

Expr ::= Add | Name | IntConst | RealConst | CharConst

Add ::= LOP:Expr ROP:Expr ⇑Type:String

Name ::= ⇐Name:String ⇑Type:String

IntConst ::= ⇐Value:INTEGER ⇑Type:String

RealConst ::= ⇐Value:REAL ⇑Type:String

CharConst ::= ⇐Value:CHAR ⇑Type:String

S
lid

e
9
–
2
6

'&

$%

PROCEDURE Assign (n: Node);

Expr(n.Left); Expr(n.Right);

IF NOT(n.Left.Type = n.Right.Type OR

(n.Left.Type="REAL" AND n.Right.Type="INT"))

THEN PRINT n.Left.Pos ":Type mismatch" ENDIF

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN BinArith(n);

ELSIF n.Kind = Name THEN n.Type := lookup(n.Name);

ELSIF n.Kind = IntConst THEN n.Type := "INT";

ELSIF n.Kind = CharConst THEN n.Type := "CHAR";

ELSIF n.Kind = RealConst THEN n.Type := "REAL";

ENDIF

S
lid

e
9
–
2
7

'&

$%

PROCEDURE BinArith (n: Node);

Expr(n.LOP); Expr(n.ROP);

IF n.LOP.Type = "INT" AND n.ROP.Type = "INT" THEN

n.Type := "INT"

ELSIF (n.LOP.Type = "INT" OR n.LOP.Type = "REAL") AND

(n.ROP.Type = "INT" OR n.ROP.Type = "REAL") THEN

n.Type := "REAL"

ELSIF n.LOP.Type = "ERROR" OR n.ROP.Type = "ERROR" THEN

n.Type := "ERROR"

ELSE

PRINT n.Pos ":Illegal operation";

n.Type := "ERROR"

ENDIF

S
lid

e
9
–
2
8

'&

$%
Add

LOP ROP

type=real

Add

LOP ROP

type=real

Assign

Left Right

Add

LOP ROP

type=int

val=7

type=int

IntConst

val=2

type=int

IntConst

RealConst

val=9.3

type=realId="X"

Name

type=int

RealConst

val=6.5

type=real

Add

LOP ROP

type=real

Id="Y"

Name

type=real

Y:=X+6.5+(2+7)+9.3

S
lid

e
9
–
2
9

'&

$%

Add

LOP ROP

type=error

Assign

Left Right

Id="Y"

Name

type=int

Add

LOP ROP

type=error

Add

LOP ROP

type=real

RealConst

val=6.5

type=real

RealConst

val=9.3

type=real

val=7

type=int

IntConst

type=char

CharConst

val="C"

Id="X"

Name

type=int

Add

LOP ROP

type=error

Y:=X+6.5+(”C”+7)+9.3

S
lid

e
9
–
3
0

'&

$%

Type Checking Assignments. . .

• n.LOP.Type & n.ROP.Type are available once we’ve returned

from Expr(n.LOP);Expr(n.ROP).

• We use the special type value "ERROR" to avoid printing an

error message more than once for each expression.

• Note the difference between type equivalence and

assignability:

1. Type equivalence is used e.g. with binary operators such

as + and <. In Pascal, integer & real are equivalent.

2. In Pascal, an integer can be assigned to a real, but not

vice versa.

• In Modula-2, integers and reals are neither type equivalent

nor assignable.

S
lid

e
9
–
3
1

'&

$%

Synthesized Attributes

• Synthesized attributes move values up the tree (from the

leaves towards the root). The value of a synthesized

attribute A at a node n is determined from the values of n’s

children:

n.A := f(n.Ch1.A1, n.Ch2.A2)

Synthesized

Attributes

Input

Attributes

a

B

A

C

D E

x b

y z

PROCEDURE ConstExpr (

n:Node);

ConstExpr(n.LOP);

ConstExpr(n.ROP);

n.Val :=

n.LOP.Val+

n.ROP.Val;

S
lid

e
9–32

'&

$%
LOOP–EXIT

• In Modula-2, the EXIT statement can only occur within a

LOOP statement:

BEGIN

LOOP

IF ...THEN

WHILE ...DO

EXIT; ⇐ OK!

END

END

END

EXIT ⇐ Illegal!

END

S
lid

e
9
–
3
3

'&

$%

Stat ::= If | Loop | Exit

If ::= expr:Expr body:Stat ⇓InLoop:BOOLEAN

Loop ::= body:Stat ⇓InLoop:BOOLEAN

Exit ::= ⇓InLoop:BOOLEAN

PROCEDURE Stat (N:Node)

IF n.Kind = If THEN

Expr(n.expr); n.body.InLoop:=n.InLoop;Stat(n.body);

ELSIF n.Kind = Loop THEN

n.body.InLoop := TRUE; Stat(n.body);

ELSIF n.Kind = Exit THEN

IF NOT n.InLoop THEN

PRINT "ERROR: EXIT not in LOOP"; ENDIF

ENDIF

S
lid

e
9
–
3
4

'&

$%

Environments

• In the previous type checking example we assumed there was

a function lookup that would find the type of an identifier.

• The problem is that there may be several uses of the same

name in a program, and each may have a different type:

char x = ’c’;

int main() {

int x = 10; {

float x = 10.0;

printf("%f", x); // Which x?

}

}

• We’ll be using environment attributes to disambiguate

identifier references.

S
lid

e
9
–
3
5

'&

$%

Environments. . .

• Write a tree-walk evaluator that type checks Pascal
assignment statements.

• Let declared variables be stored in an environment
attribute, a set of tuples of type EnvT=Name 7→ Type.

• Let there be a function lookup(E,V) that returns the
type of an variable V in an environment E.

S
lid

e
9–36

'&

$%
Environments. . .

Assign ::= Des:Expr Expr:Expr ⇓Env:EnvT

Expr ::= Add | Name | IntConst | RealConst

Add ::= LOP:ConstExpr ROP:ConstExpr ⇑Type:String
⇓Env:EnvT

Name ::= ⇐Id:String ⇑Type:String ⇓Env:EnvT

IntConst ::= ⇐Value:INTEGER ⇑Type:String
⇓Env:EnvT

RealConst ::= ⇐Value:REAL ⇑Type:String ⇓Env:EnvT

S
lid

e
9–37

'&

$%

Environments. . .

PROCEDURE Assign (n: Node);

n.Des.Env := n.Env;

n.Expr.Env := n.Env;

Expr(n.Des); Expr(n.Expr);

IF n.Des.Type 6= n.Expr.Type THEN

PRINT n.Expr.Pos ":Type mismatch"

ENDIF

END;

S
lid

e
9–38

'&

$%

Environments. . .

S
lid

e
9
–
3
9

'&

$%

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN BinArith(n);

ELSIF n.Kind = Name THEN

IF member(n.Env, n.Id) THEN

n.Type := lookup(n.Env, n.Id);

ELSE

PRINT "Ident not declared"

n.Type := "ERROR"

ENDIF;

ELSIF n.Kind = IntConst THEN

n.Type := "INT";

ELSIF n.Kind = RealConst THEN

n.Type := "REAL";

ENDIF

S
lid

e
9
–
4
0

'&

$%
PROCEDURE BinArith (n: Node);

n.LOP.Env := n.Env;

Expr(n.LOP);

n.ROP.Env := n.Env;

Expr(n.ROP);

IF n.LOP.Type = "INT" AND n.ROP.Type = "INT" THEN

n.Type := "INT"

ELSIF (n.LOP.Type = "INT" ORn.LOP.Type = "REAL") AND

(n.ROP.Type = "INT" OR n.ROP.Type = "REAL") THEN

n.Type := "REAL"

ELSE

PRINT n.Pos ":Illegal operation";

n.Type := "ERROR"

ENDIF

S
lid

e
9
–
4
1

'&

$%

Add

LOP ROP

type=real

Env={X 7→ · · ·}

Assign

Left Right

RealConst

val=6.5

type=real

Env={· · ·}

Id="Z"

Name

type=int

Env={· · ·}

Add

LOP ROP

type=real

Env={X 7→ · · ·}

RealConst

val=9.3

type=real

Env={· · ·}

Id="X"

Name

type=int

Env={· · ·}

Id="Y"

Name

type=real

Env={· · ·}

Add

LOP ROP

type=real

Env={X 7→ · · ·}

Y:=(X+6.5)+(Z+9.3)
Env={X 7→ INT, Y 7→ REAL, Z 7→ INT}

S
lid

e
9
–
4
2

'&

$%

Inherited Attributes

• Inherited attributes move values down the tree (from the

root towards the leaves). They inform the nodes of a subtree

of the environment (context) in which they occur.

• The value of an inherited attribute A at a node n is

determined from the attributes of n’s parent p:

n.A := f(p.A1, p.A2)

a

B

A

C

D E

x b

s k

PROCEDURE BinArith (n: Node);

n.LOP.Env := n.Env;

Expr(n.LOP);

n.ROP.Env := n.Env;

Expr(n.ROP);

S
lid

e
9
–
4
3

'&

$%

History of Attribute Grammars

• What you have seen so far of attribute evaluation was know

to the programming language community already in the

early 1960’s. It was also clear at the time that synthesized

attributes alone were not enough to specify the semantics of

the languages that were of concern at the time (Algol 60).

• Something more powerful was needed, and it was not clear

to anyone exactly what that was.

• The person who finally came up with the answer was Donald

Knuth (of Stanford University), one of the best known

researchers in computer science. The following excerpts are

taken from a talk he gave to a conference on attribute

grammars.

S
lid

e
9
–
4
4

'&

$%
“Much of my story takes place in 1967, by which time a great many

computer programs had been written all over the world. [...] One of

the puzzling questions under extensive investigation at the time was

the problem of programming language semantics: How should we

define the meaning of statements in algorithmic languages?

[...] I was ACM Lecturer that year [...]. My first stop was Cornell,

where I spent the first weekend staying at Peter Wegner’s home in

Ithaca, New York. I went with Peter to synagogue on Saturday, he

went with me to a church on Sunday. We hiked outside the city in a

beautiful river valley that contained many frozen water falls. But

mostly we talked Computer Science.

S
lid

e
9
–
4
5

'&

$%

Peter asked me what I thought about formal semantics [...]. [...] my

answer was that the best way I knew to define semantics was to use

attributes whose values could be defined on a parse tree from bottom

to top. [...] We also needed to include some complicated ad hoc

methods, in order to get context-dependent information into the tree.

So Peter asked, “Why can’t attributes be defined from the top down

as well as from the bottom up?”

A shocking idea! Of course I instinctively replied that it was

impossible to go both bottom up and top-down. But after some

discussion I realized that his suggestion wasn’t so preposterous after

all, if circular definitions could somehow be avoided.

S
lid

e
9
–
4
6

'&

$%

Although attribute grammars remained at the back of my mind for

several months, my next chance to think seriously about them didn’t

come until I was away from home again — this time at a SIAM

conference in Santa Barbara, California, at the end of November.

Although the conference lists me as one of the participants, the truth

is that I spent most of the whole time sitting on the beach outside the

conference hotel writing a paper about “semantics of context free

languages” (Mathematical Systems Theory, Vol 2 (1968), pp.127–145).

[...] I spent the first day working on a test for circularity; after

rejecting three obviously false starts, I thought I had found a correct

algorithm, and didn’t try to too hard to find fault with it.

S
lid

e
9
–
4
7

'&

$%

[1970] I spent three of four pleasant days sitting under an oak tree

near Lake Langunita [Stanford], writing “Examples of formal

semantics” (Lecture Notes in Mathematics 188, (1971), pp. 95-96). It

is clear from reading [this paper] that I was still unaware of the serious

error in the circularity test [...]. I returned the galley proofs [...] to the

printer on July 28; then on August 6, I received a letter from Stein

Krogdahl in Norway, containing an elegantly presented

counterexample to my circularity algorithm. (His letter had come by

surface mail, taking six weeks to reach me, otherwise I could have

alluded to the problem in [the paper].)

In 1977 I began to work on a language for computer typesetting called

TEX, and you might ask why I didn’t use an attribute grammar to

define the semantics of TEX. Good question.”

The Genesis of Attribute Grammars, Donald E. Knuth, Stanford

University. LNCS 461, Attribute Grammars and their Applications.

S
lid

e
9
–
4
8

'&

$%
Donald Knuth

From: http://www-cs-faculty.stanford.edu/~knuth/vita.html

Donald E. Knuth was born on January 10, 1938 in Milwaukee,

Wisconsin. He studied mathematics as an undergraduate at Case

Institute of Technology, where he also wrote software at the

Computing Center. The Case faculty took the unprecendented step of

awarding him a Master’s degree together with the B.S. he received in

1960. After graduate studies at California Institute of Technology, he

received a Ph.D. in Mathematics in 1963 and then remained on the

mathematics faculty. Throughout this period he continued to be

involved with software development, serving as consultant to

Burroughs Corporation from 1960–1968 and as editor of Programming

Languages for ACM publications from 1964–1967.

He joined Stanford University as Professor of Computer Science in

1968, and was appointed to Stanford’s first endowed chair in computer

science nine years later. As a university professor he introduced a

S
lid

e
9
–
4
9

'&

$%

variety of new courses into the curriculum, notably Data Structures

and Concrete Mathematics. In 1993 he became Professor Emeritus of

The Art of Computer Programming. He has supervised the

dissertations of 28 students.

Knuth began in 1962 to prepare textbooks about programming

techniques, and this work evolved into a projected seven-volume series

entitled The Art of Computer Programming. Volumes 1–3 appeared in

1968, 1969, and 1973, and he is now working full time on the remaining

volumes. Approximately one million copies have already been printed,

including translations into six languages. He took ten years off from

this project to work on digital typography, developing the TEX system

for document preparation and the METAFONT system for alphabet

design. Noteworthy byproducts of those activities were the WEB and

CWEB languages for structured documentation, and the accompanying

methodology of Literate Programming. TEX is now used to produce

most of the world’s scientific literature in physics and mathematics.

His research papers have been instrumental in establishing several

S
lid

e
9
–
5
0

'&

$%

subareas of computer science and software engineering: LR(k) parsing;

attribute grammars; the Knuth–Bendix algorithm for axiomatic

reasoning; empirical studies of user programs and profiles; analysis of

algorithms. In general, his works have been directed towards the

search for a proper balance between theory and practice.

Professor Knuth received the ACM Turing Award in 1974 [. . .]

Professor Knuth lives on the Stanford campus with his wife, Jill. They

have two children, John and Jennifer. Music is his main avocation.

Professor Knuth has an asteroid named after him:

http://neo.jpl.nasa.gov/cgi-bin/db?name=21656

http://sunkl.asu.cas.cz/~asteroid/planetky/21656/eng.htm

Professor Knuth’s home page:

http://www-cs-faculty.stanford.edu/~knuth

S
lid

e
9
–
5
1

'&

$%

Readings and References

• Read Louden:

Abstract Syntax: 109–114

Attribute grammars: 257–270

• or read the Dragon book:

Abstract Syntax: 49

Type Checking: 343–345

AST Construction: 287–290

Syntax-Directed Definitions: 280–283

Recursive Evaluators: 316–319

S
lid

e
9
–
5
2

'&

$%
Summary

• We use the description of the abstract syntax as a

description of the structure of abstract syntax trees.

• In other words, we use context free grammars for parsing,

and to describe the data structure (the AST) produced by

the parser.

• There exist tools that take an abstract grammar as input

and produce a AST-manipulation module (with routines for

construction, traversal, and input/output of trees) as output.

S
lid

e
9
–
5
3

'&

$%

Summary. . .

• To perform semantic analysis we

1. Build an abstract syntax tree during parsing.

2. Decorate the AST with input attributes (literals and

identifiers found in the source).

3. Add attributes needed during semantic analysis.

4. Traverse the tree (one or more times) to evaluate the

attributes and emit error messages.

• Designators are the kinds of expressions that denote

writable locations (i.e. L-values). They are common on the

left hand sides of assignment statements but also occur as

actual reference parameters in procedure calls.

S
lid

e
9
–
5
4

'&

$%

Summary. . .

• The Concrete Syntax describes the physical layout of the

language, the Abstract Syntax describes the logical

structure of the language.

• A language’s Static Semantics gives the rules that a

“correct” program has to obey. Static semantic rules are

most often (but not always) enforced at compile-time. The

Dynamic Semantics describes the “meaning” of a

program, how it will behave at run-time.

• Synthesized attributes get their values from their

children only. They move up the tree. Inherited

attributes get their values from their parent only. They

move down the tree.

S
lid

e
9
–
5
5

'&

$%

Summary. . .

• The rôle of the parser (in a multi-pass analysis compiler) is

to construct an abstract syntax tree.

• We can’t always determine a visit sequence (the order in

which the AST nodes are visited) that will evaluate all

attributes in one pass. Then several traversals will be

necessary.

• We always have to convince ourselves that we have devised a

non-circular attribute evaluation scheme. We cannot have

two attributes A1 & A2 such that A1 must be evaluated

before A2 and vice versa.

S
lid

e
9
–
5
6

'&

$%
Confused Student Email

Should we know how to convert from concrete to abstract syntax for

the exam. If so, can you indicate where I might be able to find more

information on how to do this.

Don’t really know what you’re asking. Converting from concrete to

abstract syntax is what the parser does. As it is parsing the input it

builds the abstract syntax tree; with a bottom-up parser this is almost

trivial.

I have read some of the text book, but I didn’t find what I was looking

for (I think I’m looking for some sort of algorithm, or set of rules that

I can use to make the conversion, like for removing left recursion, and

common left factors).

There is no need to do anything like that to the abstract grammar

since it is not used for parsing. The abstract grammar will often be

ambiguous, left-recursive, etc, and that’s quite all right. The abstract

grammar just describes the structure of the AST nodes, that’s all.

S
lid

e
9
–
5
7

'&

$%

Confused Student Email. . .

Don’t let the word ”abstract” in ”Abstract Syntax Tree” confuse you.

There isn’t anything abstract about it at all; in fact, it is about as

concrete as you can get. The idea is that performing semantic analysis

on or generating code from an input program in source form (a text

file) is much too hard. Therefore we build an internal representation

(a data structure) of the input program during parsing, and then work

on this structure. The structure happens to be a tree, because

programs are naturally tree-shaped.

S
lid

e
9
–
5
8

'&

$%

Homework I

• Give an abstract syntax specification of Pascal and

Modula-2 for-loops.

Pascal’s concrete syntax:

ForStat ::= for ident := expr to expr do Stat

ForStat ::= for ident := expr downto expr do Stat

Modula-2’s concrete syntax:

ForStat ::= FOR ident := expr TO expr [ByPart] DO StatSeq END

ByPart ::= BY ConstExpr

• The optional BY-part is an integer constant expression

which gives the amount to add to the iteration variable each

time we go around the loop. If omitted, the increment

defaults to 1.

S
lid

e
9
–
5
9

'&

$%

Homework II

• Give an abstract syntax for Modula-2’s CASE-statement,

and construct the AST for the example below.

CASE i OF

4 .. 7 : j := 77; |

2, 6 .. 12 : j := 99; |

ELSE j := 0;

END;

Concrete Syntax:

CaseStat ::= CASE Expr OF CaseList [ELSE StatSeq] END

CaseList ::= CaseLabelList : StatSeq | CaseList | ε

CaseLabelList ::= CaseLabel , CaseLabelList | CaseLabel

CaseLabel ::= ConstExpr [.. ConstExpr]

S
lid

e
9
–
6
0

'&

$%
Homework III

• Write a Modula-2 type checker. M2 has two mutually

assignable but inequivalent integer types: INTEGER and

CARDINAL (unsigned). Integer literals ≥ 0 are either INTEGERs

or CARDINALs. Integers and reals are neither assignable nor

equivalent. TRUNC and FLOAT convert between the two.

Assign ::= Left:Expr Right:Expr

Expr ::= Add | Name | Trunc | Float | IntConst | RealConst

Add ::= LOP:Expr ROP:Expr

Trunc ::= LOP:Expr

Float ::= LOP:Expr

Name ::= ⇐Id:String

IntConst ::= ⇐Value:INTEGER

RealConst ::= ⇐Value:REAL

S
lid

e
9
–
6
1

'&

$%

Homework IV

• Write a concrete grammar that describes the syntax we have

been using to describe our abstract grammars.

• The concrete grammar should describe

Rules LHS ::= RHS

Choice LHS ::= CH1 | CH2 | · · ·
Children LHS ::= Name:Child

Input Attributes LHS ::= ⇐Attr:Type

Synthesized Attributes LHS ::= ⇑Attr:Type

Inherited Attributes LHS ::= ⇓Attr:Type

S
lid

e
9
–
6
2

