
1

CS 536 Spring 2001 1

Symbol Tables
and

Static Checks

Lecture 16

CS 536 Spring 2001 2

Outline

• How to build symbol tables

• How to use them to find
– multiply-declared and
– undeclared variables.

• How to perform type checking

CS 536 Spring 2001 3

The Compiler So Far

• Lexical analysis
– Detects inputs with illegal tokens

• e.g.: main$ ();

• Parsing
– Detects inputs with ill-formed parse trees

• e.g.: missing semicolons

• Semantic analysis
– Last “front end” phase
– Catches all remaining errors

CS 536 Spring 2001 4

Introduction

• typical semantic errors:
– multiple declarations: a variable should be declared

(in the same scope) at most once
– undeclared variable: a variable should not be used

before being declared.
– type mismatch: type of the left-hand side of an

assignment should match the type of the right-
hand side.

– wrong arguments: methods should be called with
the right number and types of arguments.

CS 536 Spring 2001 5

An sample semantic analyzer

• works in two phases
– i.e., it traverses the AST created by the parser:

1. For each scope in the program:
• process the declarations =

– add new entries to the symbol table and
– report any variables that are multiply declared

• process the statements =
– find uses of undeclared variables, and
– update the "ID" nodes of the AST to point to the

appropriate symbol-table entry.
2. Process all of the statements in the program again,

• use the symbol-table information to determine the type of each
expression, and to find type errors.

CS 536 Spring 2001 6

Symbol Table = set of entries

• purpose:
– keep track of names declared in the program
– names of

• variables, classes, fields, methods,

• symbol table entry:
– associates a name with a set of attributes, e.g.:

• kind of name (variable, class, field, method, etc)
• type (int, float, etc)
• nesting level
• memory location (i.e., where will it be found at runtime).

2

CS 536 Spring 2001 7

Scoping

• symbol table design influenced by what kind of
scoping is used by the compiled language

• In most languages, the same name can be
declared multiple times
– if its declarations occur in different scopes, and/or
– involve different kinds of names.

CS 536 Spring 2001 8

Scoping: example

• Java: can use same name for
– a class,
– field of the class,
– a method of the class, and
– a local variable of the method

• legal Java program:

class Test {

int Test;

void Test() { double Test; }

}

CS 536 Spring 2001 9

Scoping: overloading

• Java and C++ (but not in Pascal or C):
– can use the same name for more than one method
– as long as the number and/or types of parameters

are unique.

int add(int a, int b);
float add(float a, float b);

CS 536 Spring 2001 10

Scoping: general rules

• The scope rules of a language:
– determine which declaration of a named object corresponds

to each use of the object.
– i.e., scoping rules map uses of objects to their declarations.

• C++ and Java use static scoping:
– mapping from uses to declarations is made at compile time.
– C++ uses the "most closely nested" rule

• a use of variable x matches the declaration in the most closely
enclosing scope

• such that the declaration precedes the use.

CS 536 Spring 2001 11

Scope levels

• Each function has two or more scopes:
– one for the parameters,
– one for the function body,
– and possibly additional scopes in the function

• for each for loop and
• each nested block (delimited by curly braces)

CS 536 Spring 2001 12

Example

void f(int k) { // k is a parameter
int k = 0; // also a local variable
while (k) {

int k = 1; // another local variable, in a loop
}

}
– the outmost scope includes just the name "f", and
– function f itself has three (nested) scopes:

1. The outer scope for f just includes parameter k.
2.The next scope is for the body of f, and includes the variable k

that is initialized to 0.
3.The innermost scope is for the body of the while loop, and

includes the variable k that is initialized to 1.

3

CS 536 Spring 2001 13

TEST YOURSELF #1

– This is a C++ program. Match each use to its declaration, or
say why it is a use of an undeclared variable.

int k=10, x=20;

void foo(int k) {

int a = x;

int x = k;

int b = x;

while (...) {

int x;

if (x == k) {

int k, y;

k = y = x;

}

if (x == k) { int x = y; }

}

}

CS 536 Spring 2001 14

Dynamic scoping

• Not all languages use static scoping.
• Lisp, APL, and Snobol use dynamic scoping.
• Dynamic scoping:

– A use of a variable that has no corresponding
declaration in the same function corresponds to the
declaration in the most-recently-called still
active function.

CS 536 Spring 2001 15

Example

• For example, consider the following code:

void main() { f1(); f2(); }

void f1() { int x = 10; g(); }

void f2() { String x = "hello"; f3(); g(); }

void f3() { double x = 30.5; }

void g() { print(x); }

CS 536 Spring 2001 16

TEST YOURSELF #2

– Assuming that dynamic scoping is used, what is
output by the following program?

void main() { int x = 0; f1(); g(); f2(); }

void f1() { int x = 10; g(); }

void f2() { int x = 20; f1(); g(); }

void g() { print(x); }

