
1

CS 536 Spring 2001 1

Symbol Tables and
Static Checks (II)

Lecture 17
illegal declaration!

CS 536 Spring 2001 2

Review of Part I

• Static vs dynamic scoping
– generally, dynamic scoping is a bad idea

• can make a program difficult to understand
• a single use of a variable can correspond to

– many different declarations
– with different types!

• can a name be used before they are defined?
– Java: a method or field name can be used before

the definition appears,
• not true for a variable!

CS 536 Spring 2001 3

class Test {
void f() {

val = 0;
// field val has not yet been declared -- OK
g();
// method g has not yet been declared -- OK
x = 1;
// var x has not yet been declared -- ERROR!
int x;

}
void g() {}
int val;

}

Example

CS 536 Spring 2001 4

Simplification

• From now on, assume that our language:
– uses static scoping
– requires that all names be declared before they are used
– does not allow multiple declarations of a name in the same

scope
• even for different kinds of names

– does allow the same name to be declared in multiple nested
scopes

• but only once per scope
– uses the same scope for a method's parameters and for the

local variables declared at the beginning of the method

• This will make your life in P4 much easier !

CS 536 Spring 2001 5

Symbol Table Implementations

• In addition to the above simplification,
assume that the symbol table will be used to
answer two questions:

1. Given a declaration of a name, is there already a
declaration of the same name in the current scope
• i.e., is it multiply declared?

2. Given a use of a name, to which declaration does it
correspond (using the "most closely nested" rule),
or is it undeclared?

CS 536 Spring 2001 6

Note

• The symbol table is only needed to answer
those two questions, i.e.
– once all declarations have been processed to build

the symbol table,
– and all uses have been processed to link each ID

node in the abstract-syntax tree with the
corresponding symbol-table entry,

– then the symbol table itself is no longer needed
• because no more lookups based on name will be performed

2

CS 536 Spring 2001 7

What operation do we need?

• Given the above assumptions, we will need:

1. Look up a name in the current scope only
• to check if it is multiply declared

2. Look up a name in the current and enclosing scopes
• to check for a use of an undeclared name, and
• to link a use with the corresponding symbol-table entry

3. Insert a new name into the symbol table with its attributes.

4. Do what must be done when a new scope is entered.
5. Do what must be done when a scope is exited.

CS 536 Spring 2001 8

Two possible symbol table implementations

1. a list of tables
2. a table of lists

• For each approach, we will consider
– what must be done when entering and exiting a scope,
– when processing a declaration, and
– when processing a use.

• Simplification:
– assume each symbol-table entry includes only:

• the symbol name
• its type
• the nesting level of its declaration

CS 536 Spring 2001 9

Method 1: List of Hashtables

• The idea:
– symbol table = a list of hashtables,
– one hashtable for each currently visible scope.

• When processing a scope S:

front of list end of list

declarations
made in S

declarations made in
scopes that enclose S

CS 536 Spring 2001 10

Example:
void f(int a, int b) {

double x;

while (...) { int x, y; ... }

}
void g() { f(); }

• After processing declarations inside the while loop:

x: int, 3
y: int, 3

a: int, 2
b: int, 2
x: double, 2

f: (int, int) void, 1

CS 536 Spring 2001 11

List of hashtables: the operations

1. On scope entry:
• increment the current level number and add a new

empty hashtable to the front of the list.
2.To process a declaration of x:

• look up x in the first table in the list.
• If it is there, then issue a "multiply declared variable"

error;
• otherwise, add x to the first table in the list.

CS 536 Spring 2001 12

… continued

3. To process a use of x:
• look up x starting in the first table in the list;

• if it is not there, then look up x in each successive table
in the list.

• if it is not in any table then issue an "undeclared
variable" error.

4. On scope exit,
• remove the first table from the list and

decrement the current level number.

3

CS 536 Spring 2001 13

Remember

• method names belong into the hashtable for the
outermost scope
– not into the same table as the method's variables

• For example, in the example above:
– method name f is in the symbol table for the outermost scope
– name f is not in the same scope as parameters a and b, and

variable x.
– This is so that when the use of name f in method g is

processed, the name is found in an enclosing scope's table.

CS 536 Spring 2001 14

The running times for each operation:

1.Scope entry:
• time to initialize a new, empty hashtable;
• probably proportional to the size of the hashtable.

2.Process a declaration:
• using hashing, constant expected time (O(1)).

3.Process a use:
• using hashing to do the lookup in each table in the list, the

worst-case time is O(depth of nesting), when every table in
the list must be examined.

4.Scope exit:
• time to remove a table from the list, which should be O(1) if

garbage collection is ignored

CS 536 Spring 2001 15

TEST YOURSELF #1

• Question 1: C++ does not use exactly the scoping
rules that we have been assuming.
– In particular, C++ does allow a function to have both a

parameter and a local variable with the same name
• any uses of the name refer to the local variable

– Consider the following code. Draw the symbol table as it
would be after processing the declarations in the body of f
under:

• the scoping rules we have been assuming
• C++ scoping rules

• void g(int x, int a) { }
void f(int x, int y, int z) { int a, b, x; ... }

CS 536 Spring 2001 16

… continued

• Question 2:
– Which of the four operations described above

• scope entry,
• process a declaration,
• process a use,
• scope exit

– would change (and how) if the following rules for
name reuse were used instead of C++ rules:

• the same name can be used within one scope as long as the
uses are for different kinds of names, and

• the same name cannot be used for more than one variable
declaration in a nested scope

CS 536 Spring 2001 17

Method 2: Hashtable of Lists

• the idea:
– when processing a scope S, the structure of the

symbol table is:

x:

y:

z:

CS 536 Spring 2001 18

Definition

• there is just one big hashtable, containing an
entry for each variable for which there is
– some declaration in scope S or
– in a scope that encloses S.

• Associated with each variable is a list of
symbol-table entries.
– The first list item corresponds to the most closely

enclosing declaration;
– the other list items correspond to declarations in

enclosing scopes.

4

CS 536 Spring 2001 19

Example

void f(int a) {

double x;

while (...) { int x, y; ... }

void g() { f(); }

}

• After processing the declarations inside the
while loop: f:

x:

y:

z:

int, 2

int, 3 double, 2

int, 3

int void, 1

CS 536 Spring 2001 20

Nesting level information is crutial

• the level-number attribute stored in each list
item enables us to determine whether the
most closely enclosing declaration was made
– in the current scope or
– in an enclosing scope.

CS 536 Spring 2001 21

Hashtable of lists: the operations

1. On scope entry:
• increment the current level number.

2.To process a declaration of x:
• look up x in the symbol table.

• If x is there, fetch the level number from the first list
item.

• If that level number = the current level then issue a
"multiply declared variable" error;

• otherwise, add a new item to the front of the list with
the appropriate type and the current level number.

CS 536 Spring 2001 22

… continue

1. To process a use of x:
• look up x in the symbol table.
• If it is not there, then issue an "undeclared

variable" error.
2.On scope exit:

• scan all entries in the symbol table, looking at the
first item on each list. If that item's level number
= the current level number, then remove it from its
list (and if the list becomes empty, remove the
entire symbol-table entry). Finally, decrement the
current level number.

CS 536 Spring 2001 23

Running times

1.Scope entry:
• time to increment the level number, O(1).

2.Process a declaration:
• using hashing, constant expected time (O(1)).

3.Process a use:
• using hashing, constant expected time (O(1)).

4.Scope exit:
• time proportional to the number of names in the symbol table

(or perhaps even the size of the hashtable if no auxiliary
information is maintained to allow iteration through the non-
empty hashtable buckets).

CS 536 Spring 2001 24

TEST YOURSELF #2

• Assume that the symbol table is implemented using a
hashtable of lists.

• Draw pictures to show how the symbol table changes
as each declaration in the following code is processed.

void g(int x, int a) {

double d;

while (...) {

int d, w;

double x, b;

if (...) { int a,b,c; }

}

while (...) { int x,y,z; }

}

5

CS 536 Spring 2001 25

Type Checking

• the job of the type-checking phase is to:
– Determine the type of each expression in the program

• (each node in the AST that corresponds to an expression)
– Find type errors

• The type rules of a language define
– how to determine expression types, and
– what is considered to be an error.

• The type rules specify, for every operator (including
assignment),
– what types the operands can have, and
– what is the type of the result.

CS 536 Spring 2001 26

Example

• both C++ and Java allow the addition of an int
and a double, and the result is of type double.

• However,
– C++ also allows a value of type double to be assigned

to a variable of type int,
– Java considers that an error.

CS 536 Spring 2001 27

TEST YOURSELF #3

• List as many of the operators that can be
used in a Java program as you can think of
– don't forget to think about the logical and

relational operators as well as the arithmetic ones
• For each operator,

– say what types the operands may have, and
– what is the type of the result.

CS 536 Spring 2001 28

Other type errors

• the type checker must also
1. find type errors having to do with the context of

expressions,
• e.g., the context of some operators must be boolean,

2. type errors having to do with method calls.

• Examples of the context errors:
– the condition of an if statement
– the condition of a while loop
– the termination condition part of a for loop

• Examples of method errors:
– calling something that is not a method
– calling a method with the wrong number of arguments
– calling a method with arguments of the wrong types

