Homework \#1

Name
Worked with (list all people you discussed this homework with):

Each question is worth 1 points.

\#1. Let Given the alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$, and the languages over $\Sigma: \mathrm{L}_{1}=\{\mathrm{aaa}\}^{*}$, $\mathrm{L}_{2}=\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}$ and $\mathrm{L}_{3}=\mathrm{L}_{2}{ }^{*}$, describe the strings in
a) L_{2}
b) L_{3}
c) $\mathrm{L}_{1} \cap \mathrm{~L}_{3}$
\#2. Give regular expressions for the following:
a) The set of strings over $\{a, b, c\}$ where all the a's precede all the b 's which precede all the c's (there may be no a's, b's or c's)
b) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11 .
c) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.
\#3. Let $\mathrm{R} 1=\{\mathrm{a} \mathrm{a} \mathrm{a}\}^{*}, \mathrm{R} 2=\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}\{\mathrm{a}, \mathrm{b}\}, \mathrm{R} 3=\mathrm{R} 2 *$. Describe:
a) $\mathrm{R} 1 \cap \mathrm{R} 3$
b) What is the cardinality of R1 R 3 ?
\#4. Prove that regular languages are closed under reversal; that is, if L is regular, then L^{R} is regular.
\#5. Explain briefly and clearly why (how) all finite alphabets can be replaced with a two symbol alphabet. Do this in general (for any length alphabet) and then show your method for the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and the string $b b c a$. Hint: The easiest solution has nothing to do with binary numbers.

