Name	(s)
1 Junio	(19).

CS503 Homework #1

Directions: Please put your final answers on this sheet.

#0. Name some alternative notations for

a) The empty stringb)

lambda: λ , epsilon: ϵ

c) Union of Regular Expressions (Sets)

∪,+

d) Complement of a Set

Given a set A: \sim A, C(A), \overline{A} , \neg A, not A

e) Something else related to the first 2 modules

(And it's ok to post these to the bb)

#1. (10 Points) *True or False:*

a) Given a language (set of strings) L, the question: "Is it raining" is a decision problem: T $\,$ F

- b) $\{\epsilon\}$ is the empty language T F
- c) For sets A and C, \sim (A \cap C) = \sim A U \sim C T F
- d) DFA's may fail to either accept or reject a string T F

e) There exist formal languages which are not regular T F

f) Given an alphabet Σ and a regular language $L \subseteq \Sigma^*,$ the strings in Σ^* - L are not in L T ~F

Proofs:

#2. (10 Points) Prove that the function f: $N \rightarrow N$ defined by $f(n) = n^2 + 1$ is one-to-one but not onto.

<u>one-to-one</u> If $n_1 \neq n_2$, then $n_1^2 + 1 \neq n_2^2 + 1$. Thus, $f(n_1) \neq f(n_2)$

<u>onto</u> There is no *n* such that f(n) = 3 (among others)

#3. (10 points) Prove, using induction that $(w^R)^i = (w^i)^R$ Be sure to state what you are doing the induction on.

<u>Proof</u> by induction on *i*

<u>Basis</u> When i = 0, $(w^R)^0 = \varepsilon$ and $(w^i)^R = (w^0)^R = (\varepsilon)^R = \varepsilon$ (both sides = ε)

Induction Step (To show that if $(w^R)^i = (w^i)^R$, then $(w^R)^{i+1} = (w^{i+1})^R$ for $i \ge 0$)

I like to start with the left hand side ($(w^R)^{i+1}$) and show in a series of steps that it equals the right hand side ($(w^{i+1})^R$)

DFA's

#4. (10 Points) What set of strings does the following automaton accept?

Let's see: you can have zero or more 0's to start, then a 1 brings you to a final state and as long as you have 1's, you're ok, but if you have any 0's, each must be followed by a 0 or a 1 to get back to the final state.

We hadn't had regular expressions for this homework, but here is one way to write this:

#5. (10 Points) Construct a dfa to accept all strings containing an even number of zeros and an even number of ones.

This can actually be done with 3 states (can you see how?)