Name(s)

CS503
Homework \#1

Directions: Please put your final answers on this sheet.

\#0. Name some alternative notations for
a) The empty string
b)
lambda: λ, epsilon: ε
c) Union of Regular Expressions (Sets)
$\cup,+$
d) Complement of a Set

Given a set $\mathrm{A}: \sim \mathrm{A}, \mathrm{C}(\mathrm{A}), \overline{\mathrm{A}}, \neg \mathrm{A}, \operatorname{not} \mathrm{A}$
e) Something else related to the first 2 modules

(And it's ok to post these to the bb)

\#1. (10 Points) True or False:
a) Given a language (set of strings) L , the question: "Is it raining" is a decision problem: T F
b) $\{\varepsilon\}$ is the empty language T F
c) For sets A and $\mathrm{C}, \sim(\mathrm{A} \cap \mathrm{C})=\sim \mathrm{A} \mathrm{U} \sim \mathrm{C} \quad \mathrm{T} \quad \mathrm{F}$
d) DFA's may fail to either accept or reject a string \quad T F
e) There exist formal languages which are not regular $\quad \mathrm{T} \quad \mathrm{F}$
f) Given an alphabet Σ and a regular language $\mathrm{L} \subseteq \Sigma^{*}$, the strings in $\Sigma^{*}-\mathrm{L}$ are not in L T F

Proofs:

\#2. (10 Points) Prove that the function $\mathrm{f}: \mathcal{N} \rightarrow \mathcal{N}$ defined by $\mathrm{f}(\mathrm{n})=\mathrm{n}^{2}+1$ is one-to-one but not onto.
one-to-one If $\mathrm{n}_{1} \neq \mathrm{n}_{2}$, then $\mathrm{n}_{1}^{2}+1 \neq \mathrm{n}_{2}^{2}+1$. Thus, $\mathrm{f}\left(\mathrm{n}_{1}\right) \neq \mathrm{f}\left(\mathrm{n}_{2}\right)$
onto There is no n such that $\mathrm{f}(\mathrm{n})=3$ (among others)
\#3. (10 points) Prove, using induction that $\left(w^{R}\right)^{i}=\left(w^{i}\right)^{R}$ Be sure to state what you are doing the induction on.

Proof by induction on i
Basis When $i=0, \quad\left(w^{R}\right)^{0}=\varepsilon$ and $\left(w^{i}\right)^{R}=\left(w^{0}\right)^{R}=(\varepsilon)^{R}=\varepsilon$
$($ both sides $=\varepsilon)$
Induction Step (To show that if $\left(w^{R}\right)^{i}=\left(w^{i}\right)^{R}$, then $\left(w^{R}\right)^{i+1}=\left(w^{i+1}\right)^{R}$ for $\left.i \geq 0\right)$
I like to start with the left hand side $\left(\left(w^{R}\right)^{i+1}\right)$ and show in a series of steps that it equals the right hand side $\left(\left(w^{i+1}\right)^{R}\right)$

$$
\begin{array}{rlrl}
\left(w^{R}\right)^{i+1} & =\left(w^{R}\right)^{i}\left(w^{R}\right) & & \text { Definition of string exponentiation } \\
& =\left(w^{i}\right)^{R}\left(w^{R}\right) & & \text { Induction Hypothesis } \\
& =\left(w^{i} w^{R}\right) \\
& =\left(w^{i+1}\right)^{R} & & \text { (uv)= } \mathbf{v}^{R} \mathbf{u}^{R} \text { (done in class) }
\end{array}
$$

DFA's

\#4. (10 Points) What set of strings does the following automaton accept?

Let's see: you can have zero or more 0 's to start, then a 1 brings you to a final state and as long as you have 1 's, you're ok, but if you have any 0 's, each must be followed by a 0 or a 1 to get back to the final state.

We hadn't had regular expressions for this homework, but here is one way to write this:

$$
0^{*} 1\left(1 *(0(0+1))^{*}\right)^{*}
$$

\#5. (10 Points) Construct a dfa to accept all strings containing an even number of zeros and an even number of ones.

This can actually be done with 3 states (can you see how?)

