Homework \#2

People I worked with and URL's of sites I visited:

1. Show the following languages are regular by creating finite automata with $\mathrm{L}=\mathrm{L}(\mathrm{M})$
a) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain 2 consecutive a 's
b) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that do not contain 2 consecutive a 's
c) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11
d) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.

Show your answers in both table and graph form.
\#2. Describe $\mathrm{L}(\mathrm{M})$ for the following nfa's: a) in words and b) as a regular expression
a)

b)

\#3. Create an NFA (with λ transitions) for all strings over $\{0,1,2\}$ that are missing at least one symbol. For example, 00010, 1221, and 222 are all in L while 221012 is not in L
\#4. a) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.
b) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length $\mathrm{k}-1$ or less.
\#5. Let L be a regular language. Show that the language consisting of all strings not in L is also regular.

