\qquad

Homework \#2

Solutions

1. Show the following languages are regular by creating finite automata with $L=L(M)$
a) Strings over $\{a, b\}$ that contain 2 consecutive a 's
b) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that do not contain 2 consecutive a 's
c) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11
d) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.

Show your answers in both table and graph form.
a) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that contain 2 consecutive a 's

	\mathbf{a}	\mathbf{b}
$>\mathbf{q}_{0}$	\mathbf{q}_{1}	\mathbf{q}_{0}
\mathbf{q}_{1}	\mathbf{q}_{2}	\mathbf{q}_{0}
${ }^{*} \mathbf{q}_{2}$	\mathbf{q}_{2}	\mathbf{q}_{2}

b) Strings over \{a,b\} that do not contain 2 consecutive a 's

	a	\mathbf{b}
$>{ }^{*} \mathbf{q}_{0}$	\mathbf{q}_{1}	\mathbf{q}_{0}
${ }^{*} \mathbf{q}_{1}$	\mathbf{q}_{2}	\mathbf{q}_{0}
\mathbf{q}_{2}	\mathbf{q}_{2}	\mathbf{q}_{2}

c) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11

Problem doesn't say whether this must be a dfa and this is easier with an nfa:

	λ	$\mathbf{0}$	$\mathbf{1}$
$>\mathbf{q}_{0}$	$\mathbf{q}_{1}, \mathbf{q}_{5}$		
\mathbf{q}_{1}		\mathbf{q}_{2}	
\mathbf{q}_{2}		\mathbf{q}_{3}	\mathbf{q}_{1}
\mathbf{q}_{3}		\mathbf{q}_{3}	\mathbf{q}_{4}
\mathbf{q}_{4}		\mathbf{q}_{3}	\mathbf{q}_{9}
\mathbf{q}_{5}		\mathbf{q}_{5}	\mathbf{q}_{6}
\mathbf{q}_{6}		\mathbf{q}_{5}	\mathbf{q}_{7}
\mathbf{q}_{7}		\mathbf{q}_{8}	\mathbf{q}_{7}
\mathbf{q}_{8}		\mathbf{q}_{10}	\mathbf{q}_{7}
${ }^{*} \mathbf{q}_{9}$		\mathbf{q}_{10}	\mathbf{q}_{9}
${ }^{*} \mathbf{q}_{10}$			\mathbf{q}_{10}

d) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.

Similar to parts a and \mathbf{b}, I will first create \mathbf{a} fa that does accept $\boldsymbol{a} \boldsymbol{b}$ and then I will reverse the final and the nonfinal states:

	\mathbf{a}	\mathbf{b}
\mathbf{q}_{0}	\mathbf{q}_{1}	\mathbf{q}_{0}
\mathbf{q}_{1}	\mathbf{q}_{1}	\mathbf{q}_{2}
\mathbf{q}_{2}	\mathbf{q}_{2}	\mathbf{q}_{2}

\#2. Create an NFA (with λ transitions) for all strings over $\{0,1,2\}$ that are missing at least one symbol. For example, 00010, 1221, and 222 are all in L while 221012 is not in L
a)

$\mathrm{L}(\mathrm{M})=$ Alternating 0 's and 1 's (including none) that begin with a 0 (01)* (01 U 0)
b)

0 or more $a b$'s followed optionally by 0 or more $a a b$'s (ab)* (aab)*
\#3. a) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.

Create a new initial state and a λ-transition from it to all the original start states Create a new final state and a λ-transition from all the original final states (which mark to no longer be final) to this new final state
b) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length $\mathrm{k}-1$ or less.

Look at a fa with 3 states:

No matter how you draw the transitions or which states are final states, to process a string of length 3 means you visited a state twice. For example:

accepts the string of length 3: aba
But just by not visiting the revisited state (q_{1}), this will accept aa (of length 2)
In general, if a string of length k is accepted by a fa with k states, it visits (at least) 1 state twice. By not visiting this state the $2^{\text {nd }}$ time (e.g., don't take the loop), we can accept a string with $\mathbf{1}$ fewer symbol, i.e, of length $k-1$.
\#5. Let L be a regular language. Show that the language consisting of all strings not in L is also regular.

If L is regular, there is a dfa, M, such that $L=L(M)$, that is, M accepts L. If we create a new finite automaton, M^{\prime}, by reversing final and non-final states, we will accept what M didn't and reject what M accepted; that is, $C(L)=L\left(M^{\prime}\right)$

