Name(s)

CS503
Homework \#2

Directions: Please put your final answers on this sheet.

\#0. Name some alternative notations for
a) dfa's
b) Extended transition function
c) Something else related to this module

(And it's ok to post these to the bb)

\#1. (10 Points) True or False:

a) Given a language (set of strings) L, the question: "Is it raining" is a decidable decision problem: T F
b) $\delta^{*}(\mathrm{q}, \mathrm{a})=\delta(\mathrm{q}, \mathrm{a})$ where $\delta *$ is the extended transition function: T F
c) Languages accepted by NFA's are closed under concatenation: T F
d) The smallest dfa accepting a* (where $\Sigma=\{a\}$) has 2 states \quad T \quad F
e) There may be more than 1 start state in an NFA $T \quad$ F
\#2. (10 Points) Given a DFA, M, with transition function δ, prove by induction on $|y|$ that $\delta^{*}(\mathrm{q}, \mathrm{xy})=\delta^{*}\left(\delta^{*}(\mathrm{q}, \mathrm{x}), \mathrm{y}\right)$ for all states q and all strings $\mathrm{x}, \mathrm{y} \varepsilon \Sigma^{*}$.
3. (10 Points) Convert the following NFA, \mathcal{N}, to a DFA, $\boldsymbol{\mathcal { M }}$, and describe $\mathcal{L}(\mathcal{M})$ (which should also $=\boldsymbol{L}(\mathcal{N})$).
$\mathcal{M}:$

\#4. (10 points) Given: An Identifier consists of a Letter followed by any number of Letters or Digits, create a finite automaton to accept these Identifiers. Show a computation on the Identifier $R 2 d 2$ and $2 d 2 R$.
\#5. (10 Points) a) Create a DFA that recognizes the set of all binary strings having a substring 00 .
b) Create a DFA that recognizes the set of all binary strings ending in 01 .
c) Create an NFA that will accept the set of all binary strings having a substring 00 or that end in 01.
d) Use the product construction to create a DFA that will accept the same language as in part c.
e) Use the Product Construction to create a DFA that will accept the set of all binary strings having a substring 00 and that end in 01 .

