Name(s)_____

CS503 Homework #2

Directions: Please put your final answers on this sheet.

- **#0.** Name some alternative notations for
 - a) dfa's
 - b) Extended transition function
 - c) Something else related to this module

(And it's ok to post these to the bb)

#1. (10 Points) True or False:

a) Given a language (set of strings) L, the question: "Is it raining" is a decidable decision problem: T F

b) $\delta^*(q,a) = \delta(q,a)$ where δ^* is the extended transition function: T F

c) Languages accepted by NFA's are closed under concatenation: T F

d) The smallest dfa accepting a^* (where $\Sigma = \{a\}$) has 2 states T F

e) There may be more than 1 start state in an NFA T F

#2. (10 Points) Given a DFA, M, with transition function δ , prove by induction on |y| that $\delta^*(q, xy) = \delta^* (\delta^*(q, x), y)$ for all states q and all strings x, y $\epsilon \Sigma^*$.

3. (10 Points) Convert the following NFA, \mathcal{N} , to a DFA, \mathcal{M} , and describe $\mathcal{L}(\mathcal{M})$ (which should also = $\mathcal{L}(\mathcal{N})$).

#4. (10 points) Given: An Identifier consists of a Letter followed by any number of Letters or Digits, create a finite automaton to accept these Identifiers. Show a computation on the Identifier *R2d2* and *2d2R*.

#5. (10 Points) a) Create a DFA that recognizes the set of all binary strings having a substring 0.0.

b) Create a DFA that recognizes the set of all binary strings ending in 01.

c) Create an NFA that will accept the set of all binary strings having a substring 0 0 or that end in 0 1.

d) Use the product construction to create a DFA that will accept the same language as in part c.

e) Use the Product Construction to create a DFA that will accept the set of all binary strings having a substring 0.0 and that end in 0.1.