Homework \#6

Directions: Please list any people or URL's consulted
\#1.
a) If 011 is accepted by an NPDA, it is accepted by a DPDA True False
b) If 011 is accepted by an NFA, it is accepted by a DFA True False
c) NPDA's can accept more languages than DPDA's True False
d) If a PDA accepts by final state, then it accepts by empty stack True False
e) If L is accepted by a dfa M, then it is accepted by a PDA, N True False
\#2. Given the $\operatorname{PDA} \mathrm{P}=(\{\mathrm{q}, \mathrm{p}\},\{0,1\},\{\perp, \mathrm{X}\}, \delta, \mathrm{q}, \perp,\{\mathrm{p}\})$ with the following transition functions:

1. $\delta(\mathrm{q}, 0, \perp)=\{(\mathrm{q}, \mathrm{X} \perp)\}$
2. $\delta(\mathrm{q}, 0, \mathrm{X})=\{(\mathrm{q}, \mathrm{XX})\}$
3. $\delta(\mathrm{q}, 1, \mathrm{X})=\{(\mathrm{q}, \mathrm{X})\}$
4. $\delta(\mathrm{q}, \varepsilon, \mathrm{X})=\{(\mathrm{p}, \varepsilon)\}$
5. $\delta(\mathrm{p}, \varepsilon, \mathrm{X})=\{(\mathrm{p}, \varepsilon)\}$
6. $\delta(\mathrm{p}, 1, \mathrm{X})=\{(\mathrm{p}, \mathrm{XX})\}$
7. $\delta(\mathrm{p}, 1, \perp)=\{(\mathrm{p}, \varepsilon)\}$
a) Show all reachable configurations when
a) $w=01$
b) $\mathrm{w}=010$
c) Also describe $\mathrm{L}(\mathrm{M})$
\#3. Design a PDA to accept the set of all strings of 0 's and 1 's with an equal number of 0 's and l's. Show an example accepting a string and an example rejecting a string.
\#4. a) Convert the grammar, $\mathrm{S} \rightarrow 0 \mathrm{~S} 0|1 \mathrm{~S} 1| \varepsilon$ to an equivalent NPDA. Show your NPDA accepting 0110 and rejecting 011 .
\#5. Convert your NPDA from \#4 back to a CFG. Show your grammar generating 0110 and not generating 011 .
\#6 This time you can post your applications of
a) PDA's
b) NPDA's
(Post to the Module 6 postings)
