Homework #6

Directions: Please list any people or URL's consulted

#1.

- a) If 0 1 1 is accepted by an NPDA, it is accepted by a DPDA True False
- b) If 0 1 1 is accepted by an NFA, it is accepted by a DFA True False
- c) NPDA's can accept more languages than DPDA's True False
- d) If a PDA accepts by final state, then it accepts by empty stack True False
- e) If L is accepted by a dfa M, then it is accepted by a PDA, N True False
- #2. Given the PDA P= ($\{q,p\}$, $\{0,1\}$, $\{\bot,X\}$, δ , q, \bot , $\{p\}$) with the following transition functions:
 - 1. $\delta(q, 0, \perp) = \{(q, X\perp)\}$
 - 2. $\delta(q, 0, X) = \{(q, XX)\}$
 - 3. $\delta(q, 1, X) = \{(q, X)\}$
 - 4. $\delta(q, \varepsilon, X) = \{(p, \varepsilon)\}$
 - 5. $\delta(p, \varepsilon, X) = \{(p, \varepsilon)\}$
 - 6. $\delta(p, 1, X) = \{(p, XX)\}$
 - 7. $\delta(p, 1, \bot) = \{(p, \varepsilon)\}$
- a) Show all reachable configurations when
- a) w = 01
- b) w = 010
- c) Also describe L(M)
- #3. Design a PDA to accept the set of all strings of 0's and 1's with an equal number of 0's and 1's. Show an example accepting a string and an example rejecting a string.
- #4. a) Convert the grammar, S \rightarrow 0 S 0 | 1 S 1 | ϵ to an equivalent NPDA. Show your NPDA accepting 0 1 1 0 and rejecting 0 1 1.
- #5. Convert your NPDA from #4 back to a CFG. Show your grammar generating 0 1 1 0 and not generating 0 1 1.

#6 This time you can post your applications of

- a) PDA'sb) NPDA's

(Post to the Module 6 postings)