Name

CS5003 Homework #5

Please list the people and URL's you consulted:

#1. Let G be a grammar in Chomsky Normal Form. Fill in the following table.

W	w	length(derivation)	max	min
			depth(tree)	depth(tree)
3	0	1	1	1
a_1	1	1	1	1
$a_1 a_2$	2	3	2	2
$a_1 a_2 a_3$	3	5	3	3
$a_1 \ a_2 \ a_3 \ a_4$				
$a_1a_2a_3a_4 \ a_5$				
$a_1 \ a_2 \ a_3a_n$	n			

#2. Convert the following grammar to Chomsky Normal Form:

$$S \rightarrow A \mid A \mid B \mid a \mid A \mid b \mid A$$

 $A \rightarrow A \mid a \mid \epsilon$
 $B \rightarrow B \mid b \mid BC$
 $C \rightarrow C \mid B \mid C \mid A \mid b \mid B$

- #3. Show context free languages are closed under reversal. Show your method on $\{ab^n\mid n\geq 0\;\}$
- #4. Given a context-free grammar G, and a string w, how could you decide if w ϵ L(G)? (Hint: See #1 or #5)
- #5. Given G in Greibach Normal Form and w ϵ L(G), what is the length of the derivation of w?