Homework \#7

\#1. True/ False

a. The Pumping Lemma for CFL's can be used to show a language is context-free True False
b. The string $z=a^{k} b^{k+1} c^{k}$ can be used to show $\left\{a^{n} b^{n} c^{n}\right\}$ is not context free True False
c. The string $z=a^{k} a^{k} a^{k}$ can be used to show $\left\{w w^{R} w \mid w \varepsilon\{a, b\}^{*}\right\}$ is not contextfree True False
d. Given a CFG, G, and a string w, it is decidable whether $w \varepsilon L(G)$ True False
e. The intersection of a context-free language and a regular language is context-free

True False
\#2. Why must we remove the recursive Start to convert to Chomsky Normal form?

If S occurs on the right hand side, and $\mathrm{S} \rightarrow \lambda$ is a production, then S can occur in the middle of a derivation and essentially shorten a sentential form. We don't want this because we want a relationship between the length of the derivation and the length of the string generated.
\#3. What is the relationship between the length of a string and the length of its derivation if the grammar is in Greibach normal Form?

If there are no lambda productions, each production produces exactly 1 terminal, so the derivation is the same as the string length in this case.
\#4. Convert the following grammar to Chomsky Normal Form. Show work clearly.

Solution

Remove Recursive Start:

$$
\mathrm{S}^{\prime} \rightarrow \mathrm{S}
$$

$$
S \rightarrow a S b|B B| B C D|a b| B C
$$

$$
A \rightarrow B|D D| B C B|D| \lambda
$$

$$
B \rightarrow A B \mid C
$$

$$
C \rightarrow C c \mid c
$$

$D \rightarrow S c c \mid c c$

Remove λ Productions:
A is nullable, but the others are not (no production has an "A" on its rhs).
New grammar:
$S^{\prime} \rightarrow$ S
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{BB}| \mathrm{BCD}|\mathrm{ab}| \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{B}|\mathrm{DD}| \mathrm{BCB} \mid \mathrm{D}$
$\mathrm{B} \rightarrow \mathrm{AB}|\mathrm{B}| \mathrm{C}$
$\mathrm{C} \rightarrow \mathrm{Cc} \mid \mathrm{c}$
$\mathrm{D} \rightarrow \mathrm{Scc} \mid \mathrm{cc}$
Remove unit rules:
$\mathrm{S}^{\prime} \rightarrow \mathrm{aSb}|\mathrm{BB}| \mathrm{BCD}|\mathrm{ab}| \mathrm{BC}$
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{BB}| \mathrm{BCD}|\mathrm{ab}| \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{AB}|\mathrm{Cc}| \mathrm{c}|\mathrm{DD}| \mathrm{BCB}|\mathrm{Scc}| \mathrm{cc}$
$\mathrm{B} \rightarrow \mathrm{AB}|\mathrm{Cc}| \mathrm{c}$
$\mathrm{C} \rightarrow \mathrm{Cc} \mid \mathrm{c}$
D \rightarrow Scc $\mid \mathrm{cc}$

Remove useless:
Term $=\left\{D, C, A, S, S^{\prime}\right\}$ so all useful so far
Reach $=\left\{S^{\prime}, S, B, C, D, A\right\}$ so all useful:
$S^{\prime} \rightarrow \mathrm{aSb}|\mathrm{BB}| \mathrm{BCD}|\mathrm{ab}| \mathrm{BC}$
$\mathrm{S} \rightarrow \mathrm{aSb}|\mathrm{BB}| \mathrm{BCD}|\mathrm{ab}| \mathrm{BC}$
$\mathrm{A} \rightarrow \mathrm{AB}|\mathrm{Cc}| \mathrm{c}|\mathrm{DD}| \mathrm{BCB}|\mathrm{Scc}| \mathrm{cc}$
$\mathrm{B} \rightarrow \mathrm{AB}|\mathrm{Cc}| \mathrm{c}$
$\mathrm{C} \rightarrow \mathrm{Cc} \mid \mathrm{c}$
D \rightarrow Scc $\mid \mathrm{cc}$

Convert to CNF (lots of ways to do this)

```
S'}->\mp@subsup{\textrm{AT}}{1}{}|\textrm{BB}|\mp@subsup{\textrm{B T}}{3}{}|\mp@subsup{\textrm{A}}{}{\prime}\mp@subsup{\textrm{T}}{2}{}|\textrm{BC
A'}->\textrm{a
T
T
T3}->\textrm{CD
A }->\textrm{AB}|\textrm{CT}4|\textrm{c}|\textrm{DD}|\mp@subsup{\textrm{BT}}{6}{}|\textrm{Scc}|\textrm{cc
S }->\mp@subsup{\textrm{AT}}{1}{}|\textrm{BB}|\mp@subsup{\textrm{B T}}{3}{}|\mp@subsup{\textrm{A T}}{2}{}|\textrm{BC
B}->\textrm{AB}|\mp@subsup{\textrm{CT}}{4}{}|\textrm{c
T
D }->\mp@subsup{\textrm{S T}}{5}{}|\mp@subsup{\textrm{T}}{4}{}\mp@subsup{\textrm{T}}{4}{
T5}->\mp@subsup{\textrm{T}}{4}{}\mp@subsup{\textrm{T}}{4}{
T
```

\#5. Show the following languages are or are not context-free:
a) $\left\{a^{i} b^{j} c^{m} \mid i \neq j \neq m\right\}$

Many of you told me this was not context-free. I think you got caught in what $\mathrm{i} \neq \mathrm{j} \neq \mathrm{m}$ means. Note that when $\mathrm{i}=2, \mathrm{j}=3, \mathrm{~m}=2, \mathrm{i} \neq \mathrm{j} \neq \mathrm{m}$. (\neq is not transitive).

Here is a grammar:
In what follows:
A generates 0 or more a 's
B generates 0 or more b 's
C generates 0 or more c 's
E first generates an equal number of b 's and c 's then 1 or more b 's (via B) or 1 or more c's (via $c C$).
So $\mathrm{E} \rightarrow \mathrm{b}^{*} \mathrm{c}^{*}(\# \mathrm{~b} \neq \# \mathrm{c})$
Similarly $D \rightarrow a^{*} b^{*}(\# a \neq \# b)$
It is context-free:
$\mathrm{S} \rightarrow \mathrm{AE} \mid \mathrm{DC}$
$\mathrm{A} \rightarrow \mathrm{a} \mathrm{A} \mid \lambda$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{c} \mathrm{C} \mid \lambda$
$\mathrm{D} \rightarrow \mathrm{aDb}|\mathrm{B}| \mathrm{aA}$
$\mathrm{E} \rightarrow \mathrm{bEc}|\mathrm{B}| \mathrm{cC}$
$\mathrm{S} \rightarrow \mathrm{AE} \rightarrow$ a $\mathrm{AE} \rightarrow$ a a $\mathrm{AE} \rightarrow$ aaE \rightarrow a abEc \rightarrow a abbEcc \rightarrow aabbbcc etc.
b) $\left\{\mathrm{a}^{\left.\mathrm{i} b^{\mathrm{j}} \mathrm{c}^{\mathrm{m}} \mid \mathrm{i}<\mathrm{j}<\mathrm{m} ; \mathrm{i}, \mathrm{j}, \mathrm{k} \geq 0\right\}}\right.$

Not context free:
o Let n be the integer from the CFL pumping lemma
o Choose $x=a^{n} b^{n+1} c^{n+2}$
o Consider all strings u, v, w, y, z such that

- $\mathrm{x}=\mathrm{uvwyz}$
- $|\mathrm{vwy}|<=\mathrm{n}$
- $|\mathrm{vy}|>=1$
o There are five possible cases for strings v and y
- v and y contain at least 1 a and 0 b 's and c's
- $\quad \mathrm{v}$ and y contain at least 1 a and 1 b and 0 c 's
- v and y contain at least 1 b and 0 a's and c's
- v and y contain at least 1 b and 1 c and 0 a's
- $\quad \mathrm{v}$ and y contain at least 1 c and 0 a's and b's
- In summary, v and y cannot contain both a's and c's.
- This follows from the fact that $|v w y|<=n$
- $\quad v$ and y must contain at least one character
- This follows from the fact that $|v y|>=1$
o We will show for each case that there exists a k such that $u v^{k} w y^{k} z$ is not in L
o Case 1: v and y contain at least 1 a and 0 b 's and c's
- Choose $\mathrm{k}=2$
- $u v^{2} w y^{2} z$ is not in L
- $u v^{2} w y^{2} z$ contains exactly $n+1$ b's
- This follows from the fact that uvwyz contains exactly $\mathrm{n}+1 \mathrm{~b}$'s and
- v and y contain 0 b's
- $u v^{2} w y^{2} z$ contains at least $n+1$ a's
- This follows from uvwyz contains exactly n a's and
- v and y contain at least 1 a
o Case 2: v and y contain at least 1 a and b and 0 c 's
- Choose $\mathrm{k}=2$
- $u v^{2} w y^{2} z$ is not in L
- $u v^{2} w y^{2} z$ contains exactly $n+2$ c's
- This follows from the fact that uvwyz contains exactly $\mathrm{n}+2 \mathrm{c}$'s and
- v and y contain 0 c's
- $u v^{2} w y^{2} z$ contains at least $n+2$ b's
- This follows from uvwyz contains exactly $\mathrm{n}+1 \mathrm{~b}$'s and
- v and y contain at least 1 b
o Case 3: v and y contain 0 a's and c's and at least 1 b
- Choose k=2
- Could choose $\mathrm{k}=0$ as well
- $u v^{2} w y^{2} z$ is not in L
- $u v^{2} w y^{2} z$ contains exactly $n+2$ c's
- This follows from the fact that uvwyz contains exactly $\mathrm{n}+2 \mathrm{c}$'s and
- $\quad \mathrm{v}$ and y contain 0 c 's
- $u v^{2} w y^{2} z$ contains at least $n+2$ b's
- This follows from uvwyz contains exactly $\mathrm{n}+1 \mathrm{~b}$'s and
- $\quad \mathrm{v}$ and y contain at least 1 b
o Case 4: v and y contain 0 a's and at least 1 b and 1 c
- Choose $\mathrm{k}=0$
- uwz is not in L
- uwz contains exactly n a's
- This follows from the fact that uvwyz contains exactly n a's and
- v and y contain 0 a's
- uwz contains at most n b's
- This follows from uvwyz contains exactly $\mathrm{n}+1 \mathrm{~b}$'s and
- $\quad \mathrm{v}$ and y contain at least one b
o Case 5: v and y contain 0 a's and b's and at least 1 c
- Choose $\mathrm{k}=0$
- uwz is not in L
- uwz contains exactly $\mathrm{n}+1$ b's
- This follows from the fact that uvwyz contains exactly $\mathrm{n}+1 \mathrm{~b}$'s and
- v and y contain 0 b 's
- uwz contains at most $\mathrm{n}+1 \mathrm{c}$'s
- This follows from uvwyz contains exactly $\mathrm{n}+2$ c's and
- v and y contain at least 1 c
o In all cases, we have shown that there exists a choice of k such that $u v^{k} w y^{k} z$ is not in L.
o Thus L does not satisfy the pumping condition.
o Thus L is not a context-free language.

