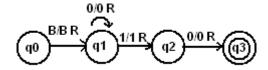
CS5003 Homework #7


I worked with:

I consulted:

#1. M is the Turing machine:

δ	В	a	b	С
q_0	q_1,B,R			
q_1	q_2,B,L	q ₁ ,a,R	q_1,c,R	q ₁ ,c,R
q_2		q ₂ ,c,L		q ₂ ,b,L

- a) Trace the computation of a a b c a
- b) Trace the computation of b c b c
- c) Draw the graph for M
- d) What does M do?
- #2. Construct a Turing machine with alphabet $\{a,b\}$ to compute f(n) = 2n+3. Represent numbers in unary notation; that is, 0 is represented by a I on the tape, 1 by II, 2 by III. (So if n = 3, you would be left with ten 1's on the tape etc.). Have your Turing machine halt in the configuration: $q_f B f(n) B$.
- 3. Create a Turing machine to accept the language: a(a U b)* b
- #4. Given the following Turing machine,

- a) What is L(M)
- b) Show R(M) using the encodings described in the reading.
- #5. Construct a Turing machine in words (i.e, describe its moves without actually writing all the transitions) that determines whether a string over {0,1} is the encoding of a Turing machine.