Homework \#2

People I worked with and URL's of sites I visited:

\#1. Convert to Chomsky Normal Form. Please follow the steps even if you can "see" the answer:
a) the expression grammar, G :
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$
Recursive Start
$\mathrm{E}^{\prime} \rightarrow \mathrm{E}$
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow$ (E) $\mid \mathbf{a}$
No λ productions

Chain Rules

$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$ ok
Change $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$ to $\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F}|(\mathrm{E})| \mathrm{a}$
Change $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$ to $\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{T} * \mathrm{~F}|(\mathrm{E}) \mid \mathrm{a}$
Change $\mathrm{E}^{\prime} \rightarrow \mathrm{E}$ to $\mathrm{E}^{\prime} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{T} * \mathrm{~F}|(\mathrm{E}) \mid \mathrm{a}$
So have:
$\mathrm{E}^{\prime} \rightarrow \mathrm{E}+\mathrm{T}\left|\mathrm{T}^{*} \mathrm{~F}\right|(\mathrm{E}) \mid \mathrm{a}$
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{T} * \mathrm{~F}| \mathbf{(E) | a}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{E}) \mid \mathbf{a}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{a}$
Useless

1. All productions produce terminal strings
2. All symbols reachable from S

Chomsky Normal Form

Introduce $\mathrm{T}_{\mathrm{a}}, \mathrm{T}_{\mathbf{(},} \mathrm{T}_{\mathbf{)}}, \mathrm{T}_{+}, \mathrm{T}_{*}$:
$\mathrm{E}^{\prime} \rightarrow \mathrm{E} \mathrm{T}_{+}$T
$\mathrm{E}^{\prime} \rightarrow \mathrm{T}$ T* \mathbf{F}

```
E'}->\mp@subsup{\mp@code{T}}{(E T T)}{
E'}->\mathbf{a
E }->\mathbf{E T+T
E T TT*F
E }->\textrm{T}(\textrm{E T
E}->\mathbf{a
T T T T* F
T}->\textrm{T}(\textrm{E T
T}->\mathbf{a
F}->\mp@subsup{\textrm{T}}{(}{}\mathbf{E T
F}->\mathbf{a
Ta}->\mathbf{a
T}->\mathrm{ (
T)}->\mathrm{ )
T+
T* * *
```

Introduce Intermediate variables: $\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3}, \mathbf{V}_{4}, \mathbf{V}_{5}$:
$\mathrm{E}^{\prime} \rightarrow \mathrm{TV}_{1}$
$\mathrm{V}_{1} \rightarrow \mathrm{E} \mathrm{T}_{\text {) }}$
$\mathrm{E}^{\prime} \rightarrow$ a
$\mathbf{E} \rightarrow \mathbf{E} \mathbf{V}_{2}$
$\mathrm{V}_{2} \rightarrow \mathrm{~T}_{+} \mathrm{T}$
$\mathrm{E} \rightarrow \mathrm{T} \mathrm{V}_{3}$
$\mathrm{V}_{3} \rightarrow \mathrm{~T} * \mathrm{~F}$
$\mathrm{T} \rightarrow \mathrm{T}_{\text {(}} \mathrm{V}_{4}$
$\mathrm{E} \rightarrow \mathrm{a}$
$\mathbf{V}_{4} \rightarrow \mathbf{E T}$)
$\mathrm{T} \rightarrow \mathrm{a}$
$\mathrm{F} \rightarrow \mathrm{T}_{(} \mathrm{V}_{5}$
$\mathrm{V}_{5} \rightarrow \mathrm{E} \mathrm{T}_{\text {) }}$
$\mathrm{F} \rightarrow \mathrm{a}$
$\mathrm{T}_{\mathrm{a}} \rightarrow \mathbf{a}$
$\mathrm{T}_{\mathrm{C}} \rightarrow$ (
T) \rightarrow)
$\mathrm{T}_{+} \rightarrow+$
$\mathrm{T} * \rightarrow$ *
b) $\mathrm{S} \rightarrow \mathrm{A}|\mathrm{ABa}| \mathrm{AbA}$
$\mathrm{A} \rightarrow \mathrm{A} \mid \lambda$
$\mathrm{B} \rightarrow \mathrm{Bb} \mid \mathrm{BC}$
$\mathrm{C} \rightarrow \mathrm{CB}|\mathrm{CA}| \mathrm{bB}$

Recursive Start

none

Remove λ Productions

```
Null \(=\{A, S\}\)
\(\mathrm{C} \rightarrow \mathrm{CB}|\mathrm{CA}| \mathrm{bB}\)
\(\mathrm{B} \rightarrow \mathrm{Bb} \mid \mathrm{BC}\)
\(\mathrm{A} \rightarrow \mathrm{Aa} \mid \mathrm{a}\)
\(\mathbf{S} \rightarrow \mathbf{A} \mid \mathbf{A B a | A b A | B a | b \mathbf { A } | \mathbf { A b } | \mathbf { b } | \lambda |}\)
or
\(\mathbf{S} \rightarrow \mathbf{A}|\mathbf{A B} \mathbf{B}| \mathbf{A b A}|\mathbf{B a |}| \mathbf{b} \mathbf{A}|\mathbf{A b}| \mathbf{b} \mid \lambda\)
\(\mathrm{A} \rightarrow \mathrm{Aa} \mid \mathrm{a}\)
\(\mathrm{B} \rightarrow \mathrm{Bb} \mid \mathrm{BC}\)
\(\mathbf{C} \rightarrow \mathbf{C B}|\mathbf{C A}| \mathrm{b}\) B
```


Remove chain rules

$\mathbf{S} \rightarrow \mathbf{A a}|\mathbf{a}| \mathbf{A B a | A b A | B a | b A | A b | b | \lambda}$
$\mathrm{A} \rightarrow \mathrm{Aa} \mid \mathbf{a}$
$\mathrm{B} \rightarrow \mathrm{Bb} \mid \mathrm{BC}$
$\mathrm{C} \rightarrow \mathrm{CB}|\mathrm{CA}| \mathrm{bB}$

Remove useless

Term $=\{\mathrm{A}, \mathrm{S}\}$
so have:
$\mathbf{S} \rightarrow \mathbf{A} \mathbf{a}|\mathbf{a}| \mathbf{A b A}|\mathbf{b} \mathbf{A}| \mathbf{A b}|\mathbf{b}| \lambda$
$\mathrm{A} \rightarrow \mathrm{Aa} \mid \mathbf{a}$
Reach $=\{\mathrm{S}, \mathrm{A}\}$
so above grammar is ok.

Chomsky Normal Form

Introduce new variables: $\mathrm{T}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}$
$\mathbf{S} \rightarrow \mathbf{A} \mathbf{T}_{\mathbf{a}}|\mathbf{a}| \mathbf{A} \mathbf{T}_{\mathbf{b}} \mathbf{A}\left|\mathbf{T}_{\mathbf{b}} \mathbf{A}\right| \mathbf{A} \mathbf{T}_{\mathbf{b}}|\mathbf{b}| \lambda$
$\mathbf{A} \rightarrow \mathbf{A T}_{\mathrm{a}} \mid \mathbf{a}$
$\mathrm{T}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{T}_{\mathrm{b}} \rightarrow \mathbf{b}$

Introduce new variables: $\mathrm{V}_{\mathbf{1}}$
$\mathbf{S} \rightarrow \mathbf{A} \mathbf{T}_{\mathbf{a}}|\mathbf{a}| \mathbf{A} \mathbf{V}_{\mathbf{1}}\left|\mathbf{T}_{\mathbf{b}} \mathbf{A}\right| \mathbf{A} \mathbf{T}_{\mathbf{b}}|\mathbf{b}| \lambda$
$\mathrm{V}_{1} \rightarrow \mathrm{~T}_{\mathrm{b}} \mathrm{A}$
$\mathrm{A} \rightarrow \mathrm{AT}_{\mathrm{a}} \mid \mathbf{a}$
$\mathrm{T}_{\mathrm{a}} \rightarrow \mathrm{a}$
$\mathrm{T}_{\mathrm{b}} \rightarrow \mathbf{b}$
\#2. Show the following languages are regular by creating finite automata with $\mathrm{L}=\mathrm{L}(\mathrm{M})$
a) Strings over $\{a, b\}$ that contain 2 consecutive a 's

	\mathbf{a}	\mathbf{b}
$>\mathbf{q}_{0}$	\mathbf{q}_{1}	\mathbf{q}_{0}
\mathbf{q}_{1}	\mathbf{q}_{2}	\mathbf{q}_{0}
${ }^{*} \mathbf{q}_{2}$	\mathbf{q}_{2}	\mathbf{q}_{2}

b) Strings over $\{\mathrm{a}, \mathrm{b}\}$ that do not contain 2 consecutive a 's

	\mathbf{a}	\mathbf{b}
$>* \mathbf{q}_{\mathbf{0}}$	\mathbf{q}_{1}	\mathbf{q}_{0}
${ }^{*} \mathbf{q}_{1}$	\mathbf{q}_{2}	\mathbf{q}_{0}
\mathbf{q}_{2}	\mathbf{q}_{2}	\mathbf{q}_{2}

c) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11

Problem doesn't say whether this must be a dfa and this is easier with an nfa:

	λ	$\mathbf{0}$	$\mathbf{1}$
$>\mathbf{q}_{\mathbf{0}}$	$\mathbf{q}_{1}, \mathbf{q}_{5}$		
$\mathbf{q}_{\mathbf{1}}$		$\mathbf{q}_{\mathbf{2}}$	
$\mathbf{q}_{\mathbf{2}}$		\mathbf{q}_{3}	$\mathbf{q}_{\mathbf{1}}$
$\mathbf{q}_{\mathbf{3}}$		\mathbf{q}_{3}	\mathbf{q}_{4}
\mathbf{q}_{4}		\mathbf{q}_{3}	\mathbf{q}_{9}
$\mathbf{q}_{\mathbf{5}}$		\mathbf{q}_{5}	\mathbf{q}_{6}
\mathbf{q}_{6}		\mathbf{q}_{5}	\mathbf{q}_{7}
\mathbf{q}_{7}		\mathbf{q}_{8}	\mathbf{q}_{7}
\mathbf{q}_{8}		\mathbf{q}_{10}	$\mathbf{q}_{\mathbf{7}}$
${ }^{*} \mathbf{q}_{9}$		\mathbf{q}_{10}	\mathbf{q}_{9}
${ }^{*} \mathbf{q}_{10}$			\mathbf{q}_{10}

d) The set of strings over $\{\mathrm{a}, \mathrm{b}\}$ which do not contain the substring $a b$.

Similar to parts a and \mathbf{b}, I will first create \mathbf{a} fa that does accept $\boldsymbol{a} \boldsymbol{b}$ and then I will reverse the final and the nonfinal states:

	\mathbf{a}	\mathbf{b}
\mathbf{q}_{0}	\mathbf{q}_{1}	\mathbf{q}_{0}
\mathbf{q}_{1}	\mathbf{q}_{1}	\mathbf{q}_{2}
\mathbf{q}_{2}	\mathbf{q}_{2}	\mathbf{q}_{2}

Show your answers in both table and graph form.
\#3. Describe $\mathrm{L}(\mathrm{M})$ for the following nfa's: a) in words and b) as a regular expression
a)

$\mathrm{L}(\mathrm{M})=$ Alternating 0 's and 1 's (including none) that begin with a 0 (01)* (01 U 0)
b)

0 or more $\boldsymbol{a b}$'s followed optionally by 0 or more $a \boldsymbol{a} b^{\prime}$'s (ab)* (aab)*
\#4. Create an NFA (with λ transitions) for all strings over $\{0,1,2\}$ that are missing at least one symbol. For example, 00010, 1221, and 222 are all in L while 221012 is not in L.

\#5. a) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.

Create a new initial state and a λ-transition from it to all the original start states Create a new final state and a λ-transition from all the original final states (which mark to no longer be final) to this new final state
b) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length $\mathrm{k}-1$ or less.

Look at a fa with 3 states:

No matter how you draw the transitions or which states are final states, to process a string of length k means you visited a state twice. For example:

accepts the string of length 3 : aba
But just by not visiting the revisited state (q_{1}), this will accept aa (of length 2)
In general, if a string of length k is accepted by a fa with k states, it visits (at least) 1 state twice. By not visiting this state the $2^{\text {nd }}$ time (e.g., don't take the loop), we can accept a string with $\mathbf{1}$ fewer symbol, i.e, of length $k \mathbf{- 1}$.
c) Let L be a regular language. Show that the language consisting of all strings not in L is also regular.

If L is regular, there is a dfa, M, such that $L=L(M)$, that is, M accepts L. If we create a new finite automaton, M^{\prime}, by reversing final and non-final states, we will accept what M didn't and reject what M accepted; that is, $C(L)=L\left(M^{\prime}\right)$

