Name

Homework #2
People | worked with and URL’s of sites | visited:

#1. Convert to Chomsky Normal Form. Please follow the steps even if you can “see” the
answer:

a) the expression grammar, G:
E>E+T|T

T>T*FF

F>(E)|a

Recursive Start

E>E
ESE+T|T
TOT*FIF
F> (E)|a

No A productions

Chain Rules

F>(E)|a ok

Change T2>T*F|F to T2>T*F|(E)|a
ChangeE>E+T|Tto EDE+T |T*F|(E)]|a
ChangeE’ > EtoE'"2>E+T |T*F|(E)|a

So have:

EE2>E+T |T*F|(E)|a
E>E+T |T*F|(E)|a
T2>T*F|(E)|a
F2>(E)|a

Useless

1. All productions produce terminal strings
2. All symbols reachable from S

Chomsky Normal Form

Introduce T,, T(, Ty, T+, T

E>ET.T
E>TT-F

E’%T(ET)
E’>a
ES>ET.T
E>TT-F
E%T(ET)
E->a
T>TT«F
T%T(ET)
T-> a
F%T(ET)
F-> a
T.=2>a
T2 (
H>)
T.>+
T«> *

Introduce Intermediate variables: Vi V, V3 V4 Vs.

E'=>TV,
Vi>ET,
E’>a
E>EV,
Vo2 T, T
E>TV;
V32> T« F
T>T Vs
E->a
V.2 ET,
T=> a
F>TVs
Vs> ET,
F> a
T.2a
T2 (
H>)
T:> +
T2 *

b)S> A|ABa|AbA
A->Aali
B>Bb|BC
C>CB|CA|bB

Recursive Start
none

Remove A Productions

Null = {A, S}

C>CB|CA|bB

B=>Bb|BC

A->Aala
S>A|ABa|AbA|Ba|bA|ADb|b|A

or
S>A|ABa|AbA|Ba|bA|ADb|b|A
A>Aala

B>Bb|BC

C>CB|CA|bB

Remove chain rules

S>Aalal|ABaJAbA|Ba|bA|ADb|b|A
A->Aala

B=>Bb|BC

C>CB|CA|bB

Remove useless

Term = {A, S}
so have:

S>Aalal|AbA|bA|ADb|b|A
A->Aala

Reach = {S, A}
so above grammar is ok.

Chomsky Normal Form

Introduce new variables: T,, Ty
S2>AT,|a|AToA|ToA|ATp|b|A
A> AT, |a

T.2a

Tp=2b

Introduce new variables: V;
S2>AT,|alAV|TobA|ATy|b|A
Vi=2 Tp A

A>AT,|a

T.—>a

Tob=2Db

#2. Show the following languages are regular by creating finite automata with L = L(M)

a) Strings over {a,b} that contain 2 consecutive a’s

M
I/li : . L T _’y;i::
)y —— O ST =\
[\..-/'J_ *'-:Q:J'I
a b
>Qo = o
Q: 2 "

b) Strings over {a,b} that do not contain 2 consecutive a’s

i
{?ﬁ:__ a__——-_%,;f:'—".\'_ o ?{:l
T/
2
a b
>*qo Jz Jo
*a1 a2 do
g2 Q2 a2

c) The set of strings over {0,1} which contain the substring 00 and the substring 11

Problem doesn’t say whether this must be a dfa and this is easier with an nfa:

] : M)
L A i ;
— el 1 o,
}\%i:g;i/ﬁ 1 -c"j/(’—_l-"?j:f_a}_ 210
A 0 1
>Jo di,9s
o)1 g2
g2 Js of1
ds ds o
G4 Js Qo
gs ds Js
ds ds gz
gz Js gz
Qs J1o0 gz
*o do Jo
*01o J10 J10

d) The set of strings over {a,b} which do not contain the substring ab.

Similar to parts a and b, I will first create a fa that does accept a b and then I will
reverse the final and the nonfinal states:

)

a b
Jo o1 do
du a: a2
g2 Q2 a2

Show your answers in both table and graph form.

#3. Describe L(M) for the following nfa’s: a) in words and b) as a regular expression

a)

L(M) = Alternating 0’s and 1’s (including none) that begin with a 0
(01)* (01U 0)

b)

L

—
A

-
i

—'|-¢—‘I:I—lll
.
o

WA
2

—|.||
-

T
i
ot o
. . e

b

0 or more ab’s followed optionally by 0 or more aab’s
(ab)* (aab)*

#4. Create an NFA (with A transitions) for all strings over {0, 1, 2} that are missing at
least one symbol. For example, 00010, 1221,and 222 are all in L while 221012 is not in

#5. a) Given an NFA with several final states, show how to convert it into one with
exactly one start state and exactly one final state.

Create a new initial state and a A-transition from it to all the original start states
Create a new final state and a A-transition from all the original final states (which
mark to no longer be final) to this new final state

b) Suppose an NFA with k states accepts at least one string. Show that it accepts a string
of length k-1 or less.

Look at a fa with 3 states:

No matter how you draw the transitions or which states are final states, to process a
string of length k means you visited a state twice. For example:

accepts the string of length 3: aba
But just by not visiting the revisited state (q), this will accept aa (of length 2)

In general, if a string of length Kk is accepted by a fa with k states, it visits (at least) 1
state twice. By not visiting this state the 2" time (e.g., don’t take the loop), we can
accept a string with 1 fewer symbol, i.e, of length k — 1.

c) Let L be a regular language. Show that the language consisting of all strings not in L is
also regular.

If L is regular, there is a dfa, M, such that L = L(M), that is, M accepts L. If we
create a new finite automaton, M’, by reversing final and non-final states, we will
accept what M didn’t and reject what M accepted; that is, C(L) = L(M’)

