Name_____

Homework #2

People I worked with and URL's of sites I visited:

#1. Convert to Chomsky Normal Form. Please follow the steps even if you can "see" the answer:

a) the expression grammar, G: $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid a$

Recursive Start

 $E' \rightarrow E$ $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid a$

<u>No λ productions</u>

Chain Rules

 $F \rightarrow (E) | a \quad ok$ Change T \rightarrow T * F |F to T \rightarrow T * F |(E) | a Change E \rightarrow E + T |T to E \rightarrow E + T |T * F |(E) | a Change E' \rightarrow E to E' \rightarrow E + T |T * F |(E) | a

So have: $E' \rightarrow E + T | T * F | (E) | a$ $E \rightarrow E + T | T * F | (E) | a$ $T \rightarrow T * F | (E) | a$ $F \rightarrow (E) | a$

Useless

- 1. All productions produce terminal strings
- 2. All symbols reachable from S

Chomsky Normal Form

Introduce T_a, **T**₍, **T**₎, **T**₊, **T**_{*:}

 $E' \rightarrow E T_+ T$ $E' \rightarrow T T_* F$

 $E' \rightarrow T(E T)$ **E'** → a $E \rightarrow E T_+ T$ $E \rightarrow T T_* F$ $E \rightarrow T_{(E T)}$ $E \rightarrow a$ $T \rightarrow T T_* F$ $T \rightarrow T(E T)$ $T \rightarrow a$ $\mathbf{F} \rightarrow \mathbf{T}_{(\mathbf{E} \mathbf{T})}$ $\mathbf{F} \rightarrow \mathbf{a}$ $T_a \rightarrow a$ $T_{(} \rightarrow ($ $T_{1} \rightarrow$) $T_+ \rightarrow +$ T∗**→** *

Introduce Intermediate variables: V1,V2,V3,V4,V5:

 $E' \rightarrow T V_1$ $V_1 \rightarrow E T_1$ E' → a $E \rightarrow E V_2$ $V_2 \rightarrow T_+ T$ $E \rightarrow T V_3$ $V_3 \rightarrow T_* F$ $T \rightarrow T_{(V_4)}$ $E \rightarrow a$ $V_4 \rightarrow E T_1$ $T \rightarrow a$ $\mathbf{F} \rightarrow \mathbf{T}_{(\mathbf{V}_{5})}$ $V_5 \rightarrow E T_)$ $F \rightarrow a$ $T_a \rightarrow a$ $T_{(} \rightarrow ($ $T_{i} \rightarrow)$ $T_+ \rightarrow +$ $T_* \rightarrow *$

b) $S \rightarrow A | A B a | A b A$ $A \rightarrow A a | \lambda$ $B \rightarrow B b | B C$ $C \rightarrow C B | C A | b B$ Recursive Start none

<u>Remove \lambda Productions</u>

 $Null = \{A, S\}$

 $C \rightarrow C B | C A | b B$ $B \rightarrow B b | B C$ $A \rightarrow A a | a$ $S \rightarrow A | A B a | A b A | B a | b A | A b | b | \lambda$

or

 $S \rightarrow A | A B a | A b A | B a | b A | A b | b | \lambda$ $A \rightarrow A a | a$ $B \rightarrow B b | B C$ $C \rightarrow C B | C A | b B$

Remove chain rules

 $S \rightarrow A a | a | A B a | A b A | B a | b A | A b | b | \lambda$ $A \rightarrow A a | a$ $B \rightarrow B b | B C$ $C \rightarrow C B | C A | b B$

Remove useless

 $Term = \{A, S\}$

so have:

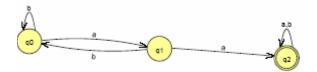
 $S \rightarrow A a | a | A b A | b A | A b | b | \lambda$ $A \rightarrow A a | a$

Reach = {S, A} so above grammar is ok.

Chomsky Normal Form

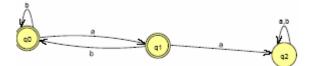
Introduce new variables: T_a, T_b $S \rightarrow A T_a | a | A T_b A | T_b A | A T_b | b | \lambda$ $A \rightarrow A T_a | a$ $T_a \rightarrow a$ $T_b \rightarrow b$ Introduce new variables: V_1 $S \rightarrow A T_a | a | A V_1 | T_b A | A T_b | b | \lambda$ $V_1 \rightarrow T_b A$ $A \rightarrow A T_a | a$ $T_a \rightarrow a$ $T_b \rightarrow b$

- #2. Show the following languages are regular by creating finite automata with L = L(M)
 - a) Strings over {a,b} that contain 2 consecutive *a*'s



	a	b
>q ₀	q ₁	qo
q ₁	q ₂	qo
*q ₂	q ₂	q ₂

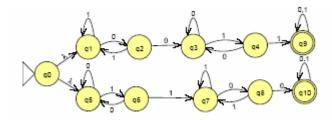
b) Strings over $\{a,b\}$ that do not contain 2 consecutive *a*'s



	a	b
>*q0	$\mathbf{q_1}$	qo
*q ₁	q ₂	qo
\mathbf{q}_2	q ₂	q ₂

c) The set of strings over $\{0,1\}$ which contain the substring 00 and the substring 11

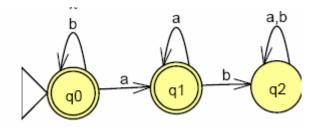
Problem doesn't say whether this must be a dfa and this is easier with an nfa:



	λ	0	1
>q ₀	q ₁ , q ₅		
q ₁		\mathbf{q}_2	
q ₂		q ₃	\mathbf{q}_1
q ₃		q ₃	q 4
q ₄		q ₃	q 9
q 5		q ₅	\mathbf{q}_{6}
q 6		q 5	q ₇
q ₇		q 8	q ₇
q ₈		q ₁₀	q ₇
*q9		q 9	q 9
*q ₁₀		q ₁₀	q ₁₀

d) The set of strings over {a,b} which do not contain the substring *ab*.

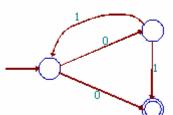
Similar to parts a and b, I will first create a fa that does accept *a b* and then I will reverse the final and the nonfinal states:



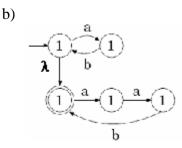
	a	b
q ₀	q ₁	qo
q ₁	$\mathbf{q_1}$	q ₂
q ₂	q ₂	q ₂

Show your answers in both table and graph form.

#3. Describe L(M) for the following nfa's: a) in words and b) as a regular expression

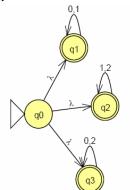


L(M) = Alternating 0's and 1's (including none) that begin with a 0 (01)* (01 U 0)



0 or more *ab*'s followed optionally by 0 or more *aab*'s (ab)* (aab)*

#4. Create an NFA (with λ transitions) for all strings over {0, 1, 2} that are missing at least one symbol. For example, 00010, 1221, and 222 are all in L while 221012 is not in L.

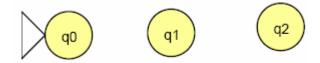


#5. a) Given an NFA with several final states, show how to convert it into one with exactly one start state and exactly one final state.

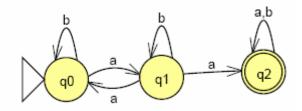
Create a new initial state and a λ -transition from it to all the original start states Create a new final state and a λ -transition from all the original final states (which mark to no longer be final) to this new final state

b) Suppose an NFA with k states accepts at least one string. Show that it accepts a string of length k-1 or less.

Look at a fa with 3 states:



No matter how you draw the transitions or which states are final states, to process a string of length *k* means you visited a state twice. For example:



accepts the string of length 3: aba

But just by not visiting the revisited state (q₁), this will accept *aa* (of length 2)

In general, if a string of length k is accepted by a fa with k states, it visits (at least) 1 state twice. By not visiting this state the 2^{nd} time (e.g., don't take the loop), we can accept a string with 1 fewer symbol, i.e., of length k - 1.

c) Let L be a regular language. Show that the language consisting of all strings not in L is also regular.

If L is regular, there is a dfa, M, such that L = L(M), that is, M accepts L. If we create a new finite automaton, M', by reversing final and non-final states, we will accept what M didn't and reject what M accepted; that is, C(L) = L(M')