CS3133

Homework \#3

People talked to and URL's consulted:

\#1. a) Use the subset construction to convert the following NFA to a DFA:

Solution

b) Use the subset construction to convert the following nfa to a dfa:

Solution:

\#2. Create the regular expression for the following automaton by eliminating states

Solution
Eliminating state 2:

Eliminating state 3:

\#3. a) Show that all finite languages are regular

If a language L is finite, we need just create a finite automaton for each of the strings in L and then union these automata (by creating a new start state and λ transitions into each of the automata.
b) Consider the operation g on three languages defined as:
$g(\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3)=\mathrm{L} 1 \mathrm{U} \mathbf{L} 2-(\mathrm{L} 3 \cap \sim \mathrm{~L} 1)$
Show that regular languages are closed under the g operation.
Regular languages are closed under complement so $\sim \mathbf{L} 1$ is regular.
Regular languages are closed under intersection so ($\mathbf{L} 3 \cap \sim \mathbf{L} 1$) is regular. Regular languages are closed under set difference so $\mathbf{L} 1 \mathbf{U L} \mathbf{L}$ - ($\mathbf{L} 3 \cap \sim \mathbf{L} 1)$ is regular.

Therefore regular languages are closed under g.
\#4. Show that it is decidable whether a regular language, L, is empty

Just look at the dfa for L and see if there is a path from the initial state to a final state.
\#5. Use the pumping lemma to show the following language is not regular:
$\left\{0^{\mathrm{n}} 1^{\mathrm{m}} 0^{\mathrm{n}+\mathrm{m}} \mid \mathrm{n}, \mathrm{m} \geq 0\right\}$
If L were regular, then there is a dfa, M, with k states accepting L.
Pick $z=0^{k} 1^{k} 0^{2 k}$
Then, since $z \varepsilon L$ and $|z| \geq k$, by the pumping lemma:
$z=u v w$ with $|u v| \leq k$, length $(v)>0$ and $u v^{i} w$ is also in L for all $i \geq 0$. Thus uv and thus v are all 0 's. Say $v=0^{j}$.

When $i=0$, we have $0^{k-j} 1^{k} 0^{2 k}$ which is not the right form for strings in L Thus this string is not in L and L is not regular.

