Name							

CS3133 Homework #3

People talked to and URL's consulted:

#1. a) Use the subset construction to convert the following NFA to a DFA:

Solution

b) Use the subset construction to convert the following nfa to a dfa:

Solution:

#2. Create the regular expression for the following automaton by eliminating states

Solution Eliminating state 2:

Eliminating state 3:

So L(M) = λ U (01 U 10) (01 U 10)* or just (01 U 10)*

#3. a) Show that all finite languages are regular

If a language L is finite, we need just create a finite automaton for each of the strings in L and then union these automata (by creating a new start state and λ transitions into each of the automata.

b) Consider the operation g on three languages defined as:

g (L1,L2,L3) = L1 U L2 – (L3 \cap ~L1)

Show that regular languages are closed under the g operation.

Regular languages are closed under complement so ~L1 is regular. Regular languages are closed under intersection so $(L3 \cap ~L1)$ is regular. Regular languages are closed under set difference so L1 U L2 – $(L3 \cap ~L1)$ is regular.

Therefore regular languages are closed under g.

#4. Show that it is decidable whether a regular language, L, is empty

Just look at the dfa for L and see if there is a path from the initial state to a final state.

#5. Use the pumping lemma to show the following language is not regular:

 $\{0^{n}1^{m} \ 0^{n+m} \mid n,m \ge 0\}$

If L were regular, then there is a dfa, M, with k states accepting L. Pick $z = 0^{k}1^{k} 0^{2k}$ Then, since $z \in L$ and $|z| \ge k$, by the pumping lemma: z = u v w with $|u v| \le k$, length(v) >0 and $uv^i w$ is also in L for all $i \ge 0$. Thus uv and thus v are all 0's. Say $v = 0^j$.

When i = 0, we have $0^{k-j}1^k 0^{2k}$ which is not the right form for strings in L Thus this string is not in L and L is not regular.