Homework #5

1. (5 Points) True or False:

a) The grammar, G: $E \rightarrow E + E E * E x$ is ambiguous	True	False
b) L(G) for the G in part a is ambiguous	True	False
c) A grammar is ambiguous if \exists w such that w's right-most derivation differs		
from its left-most derivation	True	False
d) If r is a regular expression, then L(r) can be generated by a CFG		
	True	False
e) The language described by a*b* is context-free	True	False

2. (10 Points) Given the following grammar, G:

 $S \rightarrow S A B | \varepsilon$ $A \rightarrow 0 S 1 | C D | \varepsilon$ $B \rightarrow 1 S 0 | \varepsilon$ $C \rightarrow B C | A C | 0$

Is $0 \ 1 \ 1 \ 0 \ \varepsilon \ L(G)$? Justify your answer. Is $0 \ 0 \ 1 \ 1 \ 0 \ \varepsilon \ L(G)$? Justify your answer.

#3. (10 Points) a) Create a grammar that generates the language $L = \{a^{2n}b^{3n} | n \ge 0\}$ Also b) construct a parse tree and c) leftmost derivation of *aabbb*. d) Is your grammar ambiguous? Why or why not?

#4. (10 Points) Consider the following DTD (XML grammar) for songs (from http://www.cafeconleche.org/slides/sd2004west/xmlfundamentals/22.html by Rusty Harold):

<!ELEMENT SONG (TITLE, COMPOSER+, PRODUCER*, PUBLISHER*, LENGTH?, YEAR?, ARTIST+)> <!ELEMENT TITLE (#PCDATA)> <!ELEMENT COMPOSER (#PCDATA)> <!ELEMENT PRODUCER (#PCDATA)> <!ELEMENT PUBLISHER (#PCDATA)> <!ELEMENT LENGTH (#PCDATA)> <!-- This should be a four digit year like "1999", not a two-digit year like "99" --> <!ELEMENT YEAR (#PCDATA)> <!ELEMENT ARTIST (#PCDATA)>

and the following song:

a) Translate the grammar to a standard CFG. You may consider #PCData to be terminals (that can contain any character data).

b) Using your grammar, show a parse tree for the song.

#5. (5 Points) For the grammar G:

 $S \rightarrow 0 S 1 | 1 S 0 | \varepsilon$

What is L(G)?

#6. (10 Points) For the grammar G: S \rightarrow 0 S 1 | λ

a) show that $L(G) \subseteq \{0^n 1^n \mid n \ge 0\} = L$ (You need not do a formal induction)

(**Hint 1**: show that for all w ε L(G), w ε {0ⁿ 1ⁿ | n \ge 0 } **Hint 2**: w ε L(G) means S \rightarrow w)

b) show that $\{0^n 1^n | n \ge 0\} \subseteq L(G)$ (You need not do a formal induction)

c) show that $L(G) = \{ w \mid w = w^R \}$