Homework \#6

\#1. a) $\mathcal{L}(D F A)=\boldsymbol{L}$ (NFA) True False
b) \mathcal{L} (DPDA) $=\mathcal{L}$ (NDPDA) True False
c) A CFG grammar can be converted to an equivalent PDA with no more than 3 states

True False
d) If a language is accepted by a dfa, it will be accepted by a PDA True False
e) PDA's can be described as a 5-tuple, a 6-tuple or a 7-tuple True False
\#2. Given the PDA, $\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}\},\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \$\}, \delta, \mathrm{q}_{0}, \$,\left\{\mathrm{q}_{2}\right\}\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{a}, \$\right)=\left(\mathrm{q}_{0}, \mathrm{a} \$\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \$\right)=\left(\mathrm{q}_{0}, \mathrm{~b} \$\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{aa}\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{a}\right)=\left(\mathrm{q}_{0}, \mathrm{ba}\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{a}, \mathrm{b}\right)=\left(\mathrm{q}_{0}, \mathrm{ab}\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{~b}, \mathrm{~b}\right)=\left(\mathrm{q}_{0}, \mathrm{bb}\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{c}, \$\right)=\left(\mathrm{q}_{1}, \$\right)$
$\delta\left(q_{0}, c, a\right)=\left(q_{1}, a\right)$
$\delta\left(\mathrm{q}_{0}, \mathrm{c}, \mathrm{b}\right)=\left(\mathrm{q}_{1}, \mathrm{~b}\right)$
$\delta\left(q_{1}, a, a\right)=\left(q_{1}, \lambda\right)$
$\delta\left(\mathrm{q}_{1}, \mathrm{~b}, \mathrm{~b}\right)=\left(\mathrm{q}_{1}, \lambda\right)$
$\delta\left(\mathrm{q}_{1}, \lambda, \$\right)=\left(\mathrm{q}_{2}, \$\right)$
a) Draw the transition graph for M
b) Show a computation on
(i) $a b c b a$
(ii) acaa
c) Describe L(M)
\#2 Given the PDA

$$
\begin{aligned}
& M=\left(\left\{q_{1}\right\},\{),(\},\{\$,(\}, \delta, \$,\{ \})\right. \\
& \delta\left(q_{1}, \underline{(}, \$\right)=\left\{\left(q_{1},()\right\}\right. \\
& \delta\left(q_{1},,()\right.=\left\{\left(q_{1},\right)\right\} \\
& \delta\left(q_{1},\right), \overline{()}=\left\{\left(q_{1}, \bar{\lambda}\right)\right\} \\
& \delta\left(q_{1}, \bar{\lambda}, \$\right)=\left\{\left(q_{1}, \lambda\right)\right\}
\end{aligned}
$$

(Note the parentheses have been underlined when they are inputs and not metasymbols for grouping)
a) Show the graph version of these transitions
b) Show a computation on the string "()"
c) Show a computation on the string ") ("
d) What is $L(M)$?
\#3. a) Construct a PDA to accept $\left\{0^{\mathrm{n}} 12^{\mathrm{n}} \mid \mathrm{n} \geq 0\right.$
\#4. a) Convert the following grammar to an equivalent NPDA.
$\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid \mathrm{A}$
$\mathrm{A} \rightarrow 1 \mathrm{~A} 0|\mathrm{~S}| \lambda$
b) Show both a derivation and a computation of 011001
\#5. Convert the PDA of page 68 from Grahne Slides part 1 to a CFG

