Name____

CS3133 Homework #4

I worked with:

I consulted:

#1. M is the Turing machine:

δ	В	a	b	c
\mathbf{q}_0	q ₁ ,B,R			
q_1	q ₂ ,B,L	q_1,a,R	q_1,c,R	q_1,c,R
q ₂		q ₂ ,c,L		q ₂ ,b,L

- a) Trace the computation of *a a b c a*
- b) Trace the computation of b c b c
- c) Draw the graph for M
- d) What does M do?

#2. Construct a Turing machine with alphabet {a,b} to compute f(n) = 2n+3. Represent numbers in unary notation; that is, 0 is represented by a *I* on the tape, 1 by *I1*, 2 by *I11*. (So if n = 3, you would be left with 10 1's on the tape etc.). Have your Turing machine halt in the configuration: $q_f B f(n) B$.

3. Create a Turing machine to accept the language: a(a U b)* b

#4. Given the following Turing machine,

- a) What is L(M)
- b) Show R(M) using the encodings of Section 11.5 (discussed in class)

#5. Construct a Turing machine in words (i.e, describe its moves without actually writing all the transitions) that determines whether a string over $\{0,1\}$ is the encoding of a Turing machine.