Homework #8

#1 True or False

ne-way in	finite tape				
FALSE					
TRUE	FALSE				
c) Turing Machines are the most powerful model of computation known today					
TRUE	FALSE				
d) Nondeterministic Turing Machines are more powerful than deterministic Turing					
TRUE	FALSE				
TRUE	FALSE				
	ne-way in FALSE TRUE vn today TRUE nistic Tur TRUE TRUE				

#2. Consider the following Turing Machine, M:

State	В	0	1	2
\mathbf{q}_0	(q_1, B, R)	-	-	-
q_1	(q_1, B, R)	$(q_1, 0, R)$	$(q_1, 1, R)$	(q ₂ ,2,L)
\mathbf{q}_2	-	(q ₂ ,1,L)	(q ₂ ,0,L)	-

a) Trace the computation for the input string: 01201

b) Trace the first 6 transitions of the computation for the input string: 0101

c) Draw the state diagram of M

d) Describe the result of a computation in M

#3. Construct a Turing Machine to accept strings containing the same number of 0's as 1's.

- a) Show pseudo-code that describes how the TM operates
- b) Create the actual transitions
- c) Show your TM processing (i) 1001 and (ii) 101

#4. Create a Turing machine to compute the function: f(n) = 2n + 3

#5. Prove: Recursive languages are closed under complement. This is a direct (and simple) proof, not an induction.