Homework \#9

1. (10 Points) True or False

a. Subproblems of the Halting Problem are undecidable

TRUE FALSE
b. Rice's Theorem can be used to show that $\mathrm{L}=\{0,1\}^{*}$ is decidable

TRUE FALSE
c. Recursively enumerable languages are closed under intersection

TRUE FALSE
d. The membership question for recursively enumerable languages is decidable TRUE FALSE
e. The membership question for recursively enumerable languages is decidable

TRUE FALSE
\#2. (20 Points)
a) List 2 decidable problems about regular languages and explain why they are decidable.
b) List 2 undecidable problems about regular languages, 2 about context-free languages and 2 about r.e. languages. Provide a reference to the justification. You needn't prove they are undecidable.
\#3. (10 Points) Prove that there is no algorithm that determines whether an arbitrary Turing machine prints the symbol " 1 " on its final transition.
\#4. (10 Points) a) (5 points) Label each concentric ring with one of the following languages:
i) context-free ii) non recursively-enumerable iii) recursive
iv) recursively enumerable v) regular. The concentric rings are intended to show the subset property.
b) For each concentric circle, name a language which is in the outer circle (including outside), but not in the inner circle.

