Homework #9

1. (10 Points) True or False

a.	Subproblems of the Halting Problem are undecidable	TRUE	FALSE
b.	Rice's Theorem can be used to show that $L = \{0,1\}^*$ is decidable		
		TRUE	FALSE
c.	Recursively enumerable languages are closed under intersection		
		TRUE	FALSE
d.	The membership question for recursively enumerable languages	is decida	ble
		TRUE	FALSE
e.	The membership question for recursively enumerable languages	is decida	ıble
		TRUE	FALSE

#2. (20 Points)

a) List 2 decidable problems about regular languages and explain why they are decidable.b) List 2 undecidable problems about regular languages, 2 about context-free languages and 2 about r.e. languages. Provide a reference to the justification. You needn't prove they are undecidable.

#3. (10 Points) Prove that there is no algorithm that determines whether an arbitrary Turing machine prints the symbol "1" on its final transition.

#4. (10 Points) a) (5 points) Label each concentric ring with one of the following languages:

i) context-free ii) non recursively-enumerable iii) recursive

iv) recursively enumerable v) regular. The concentric rings are intended to show the subset property.

b) For each concentric circle, name a language which is in the outer circle (including outside), but not in the inner circle.

