Performance Analysis of Orb

Rabin Karki and Thangam V. Seenivasan

Overview

What is Orb?

Why to study Orb?

Experiments

Future Steps

What is Orb?

- Orb is a free software which enables users to access media files from their Home PC to any Internet connected device.
- Launched in 2005. Over 7 million registered users.
- Features:
 - Allows to Share photos, video, audio
 - watch TV , Internet Radio.
 - Webcam Monitoring
 - Can be used along with a gaming console.

Installation and Use

Host End

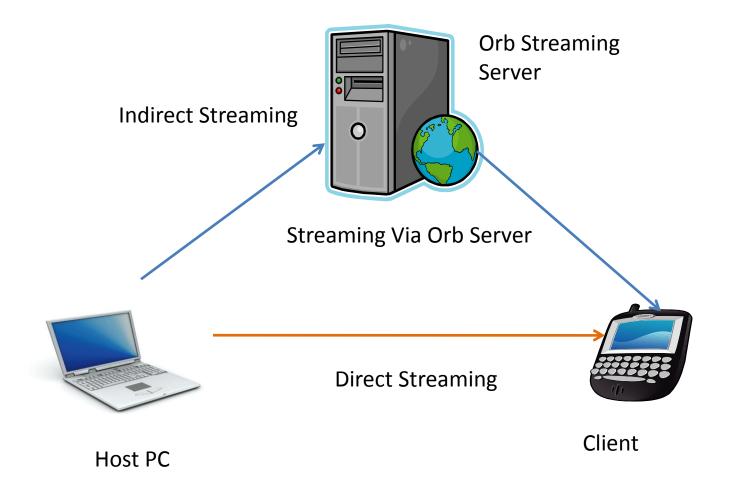
- Download Orb from http://www.orb.com/en/download_orb
- Install in host PC

Client End

- Open web browser and go to link
 https://mycast.orb.com/orb/html/login.html
- Login and access media files from anywhere in the world

How does Orb Stream?

- Two methods of streaming
 - Direct Streaming
 - Streaming via Orb server


Direct Streaming

Streaming of the video content from the Host PC to the client directly.

Streaming via Orb server

Data sent from Host PC to the Orbstreaming server Orb server redirects data to the client.

Direct Streaming and Streaming via Orb server

Direct Streaming

Scenarios of Direct Streaming:

- Host PC and Client are connected to the same LAN and share the same public IP address
- Orb host PC connected to the Internet through a router with UPnP(Universal Plug and Play functionality) enabled.
- Host Orb PC is not a part of a LAN and is directly connected to the broadband modem.

Overview

• What is Orb?

Why to study Orb?

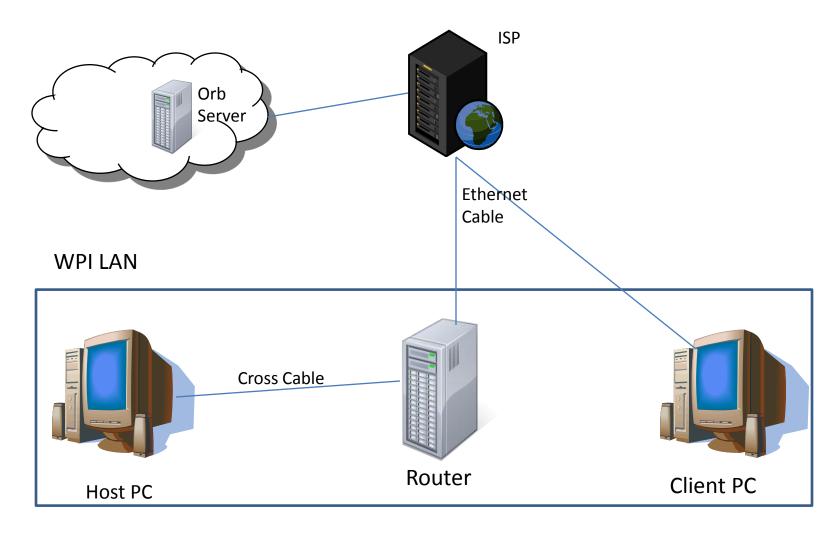
Experiments

Future Steps

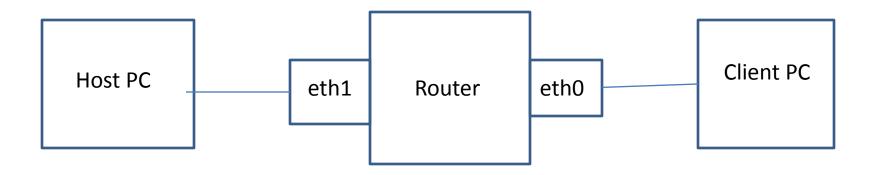
Why Study Orb?

- Orb different from typical Internet streaming
- Typical video streaming:
 - Video performance affected by downlink bandwidth to client
 - High-end servers, reliable
- Orb video from Home PC has differences:
 - Uplink bandwidth is important
 - Home network configuration matters (i.e. wireless)
 - Servers are off-the-shelf PCs
- Difference may impact performance, use may impact Internet traffic

Overview


• What is Orb?

Why to study Orb?


Experiments

Future Steps

Experimental Setup

Router Setup

- Router has the Netem module
- Netem used for network emulation

Experimental Setup

Host PC and Client PC Spec:

- RAM 1 GB
- CPU speed 2.80 GHz
- OS Windows XP
- Software on the host:
 - Orb version 2.51.0032
 - Process Explorer
- Software on Client:
 - Media Tracker
- Applications on both Client and Host PC:
 - Wireshark
 - Iperf

Router:

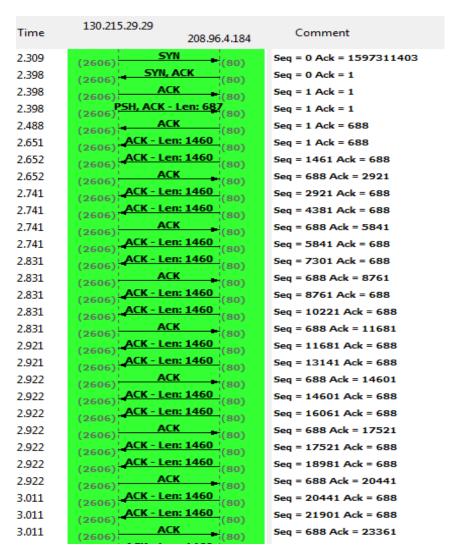
- SuSE-Linux 10.3 (2.6 kernel version)
- Two PCI cards
- Netem module

Set of Experiments Conducted

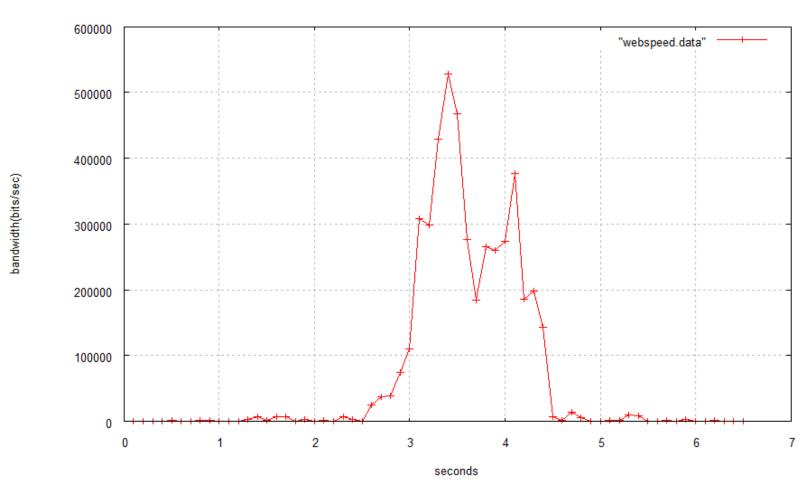
Analyze bandwidth calculation by Orb

 Video quality measurements with MediaTracker

CPU and memory usage on the server

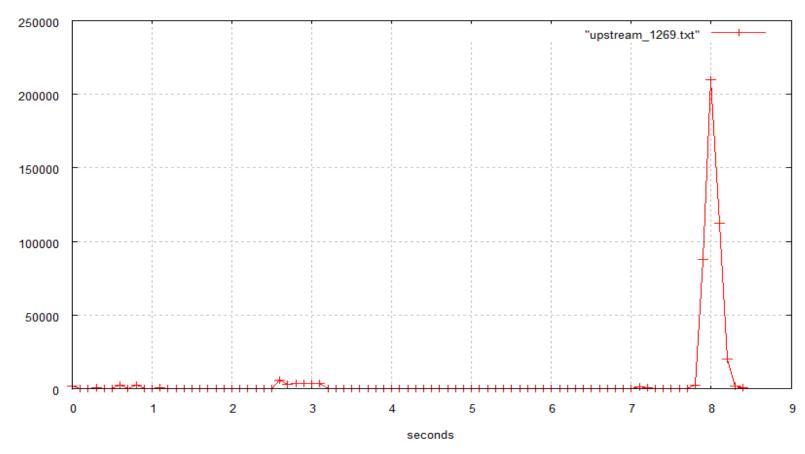

Bandwidth Estimation By Orb

- Steps Followed
 - Start Wireshark at the client
 - Click on the 'Control Panel'. Go to 'Streaming speed' and calculate the web speed and the upstream speed by clicking the 'Recalculate button.
 - Capture Wireshark trace on Client during web speed calculation.
 - Wireshark run on the Host side to analyse how the host upstream is calculated.
 - Analyze trace.


Client Web Speed Calculation Trace

0. +	Time	Source	Destination	Protocol	Info
46	2.398422	130, 215, 29, 29	208.96.4.184	нттр	GET /orb/html/speedTest.html HTTP/1.1
49	2.487659	208.96.4.184	130, 215, 29, 29	TCP	http > netmon [ACK] Seq=1 Ack=688 Win=6870 Len=0
53	2.651460	208.96.4.184	130.215.29.29	TCP	[TCP segment of a reassembled PDU]
54	2.651573	208, 96, 4, 184	130, 215, 29, 29	TCP	[TCP segment of a reassembled PDU]
55	2.651606	130.215.29.29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=2921 win=65535 Len=0
	2,741077	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
57	2.741190	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.741233	130, 215, 29, 29	208, 96, 4, 184	TCP	netmon > http [ACK] Seq=688 Ack=5841 Win=65535 Len=0
	2.741317	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.830789	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.830869	130, 215, 29, 29	208.96.4.184	TCP	netmon > http [ACK] Seg=688 Ack=8761 Win=65535 Len=0
	2.830892	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.831050	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.831085	130, 215, 29, 29	208.96.4.184	TCP	netmon > http [ACK] Seg=688 Ack=11681 win=65535 Len=0
	2,921345	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.921459	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2.921502	130, 215, 29, 29	208, 96, 4, 184	TCP	netmon > http [ACK] Seq=688 Ack=14601 win=65535 Len=0
	2.921813	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	2,921930	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	2.921970	130.215.29.29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=17521 Win=65535 Len=0
	2.922050	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	2.922176	208.96.4.184	130, 215, 29, 29	нттр	Continuation or non-HTTP traffic
	2,922207	130, 215, 29, 29		TCP	netmon > http [ACK] Seq=688 Ack=20441 win=65535 Len=0
			208.96.4.184		
	3.011225	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.011334	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.011376	130.215.29.29	208, 96, 4, 184	TCP	netmon > http [ACK] Seq=688 Ack=23361 Win=65535 Len=0
	3.011450	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	3.012012	208.96.4.184	130.215.29.29	нттр	Continuation or non-HTTP traffic
	3.012077	130, 215, 29, 29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=26281 Win=65535 Len=0
	3.012126	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.012627	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.012657	130.215.29.29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=29201 win=65535 Len=0
	3.012754	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.012986	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.013019	130, 215, 29, 29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=32121 Win=65535 Len=0
	3.013109	208, 96, 4, 184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic
	3.100783	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
	3.100844	130, 215, 29, 29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=35041 Win=65535 Len=0
92	3.100936	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
93	3.101159	208.96.4.184	130.215.29.29	HTTP	Continuation or non-HTTP traffic
94	3.101189	130.215.29.29	208.96.4.184	TCP	netmon > http [ACK] Seq=688 Ack=37961 Win=65535 Len=0
	3,103857	208.96.4.184	130, 215, 29, 29	HTTP	Continuation or non-HTTP traffic

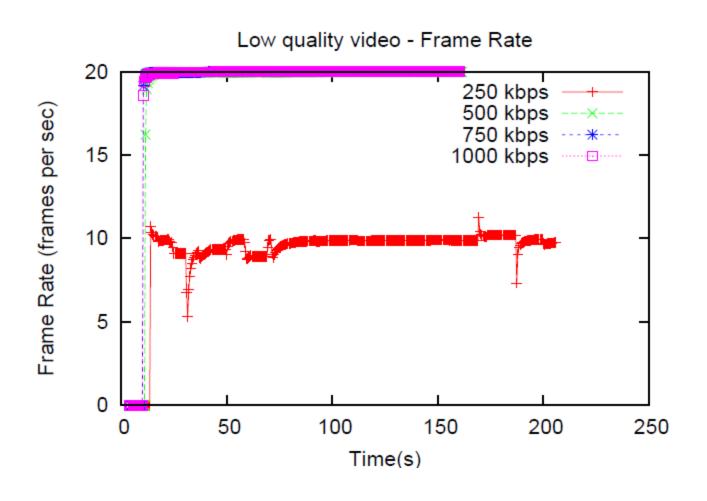
TCP Flow Graph- Client Web Speed



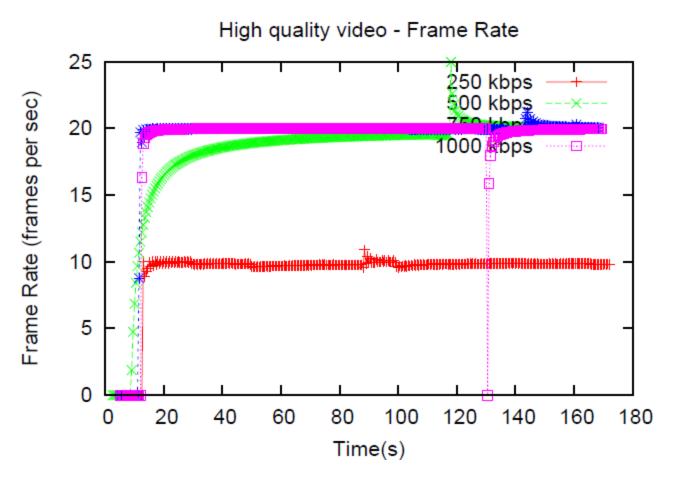
Client Web Speed Calculation

Client downloads 4Mb of data
Bandwidth = Data downloaded/ download time
Reported Web Speed = 2306 Kbps

Upstream Speed Calculation

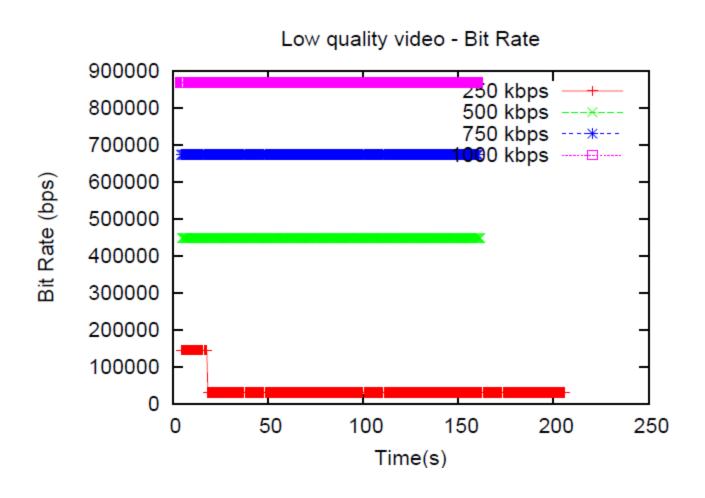

bandwidth(bits/sec)

Host PC uploads 400Kb data to Orb Server
Upstream Speed calculated based on the upload time(~ 0.5 sec here)
Reported Upstream Speed = 1269 kbps

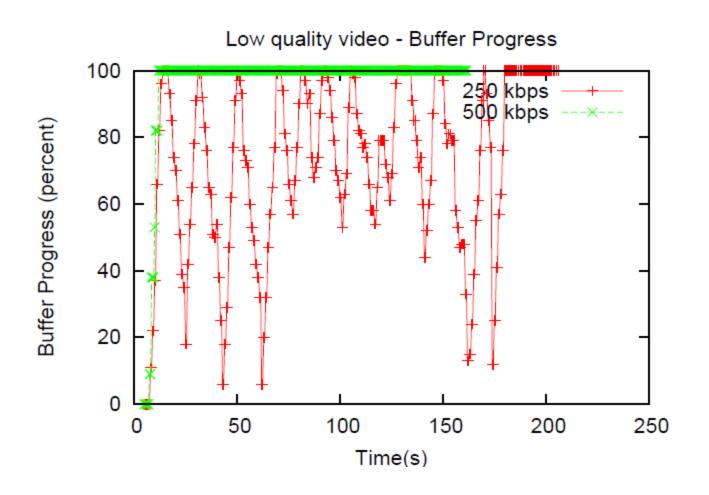

Video Quality Measurements

- Videos used:
 - WMV format
 - Low quality video
 - Resolution 320*240, File size 14.4 MB, Duration 150 sec, bitrate -768 Kbps
 - High quality video
 - Resolution 1280*720, File size 29MB, Duration 150 sec, bitrate -1546 Kbps
- Metrics for measurement
 - buffer Progress, bit rate, frame rate
- Vary bandwidth to 1000 kbps, 750 kbps, 500 kbps and 250 kbps, measure performance

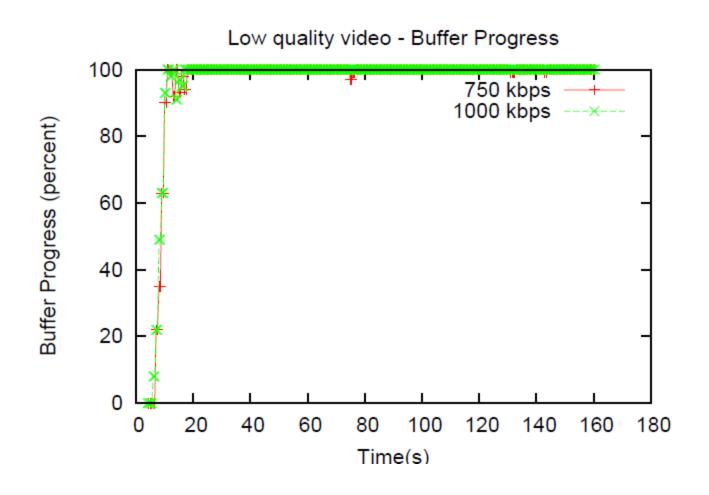
Frame rate – Low quality video

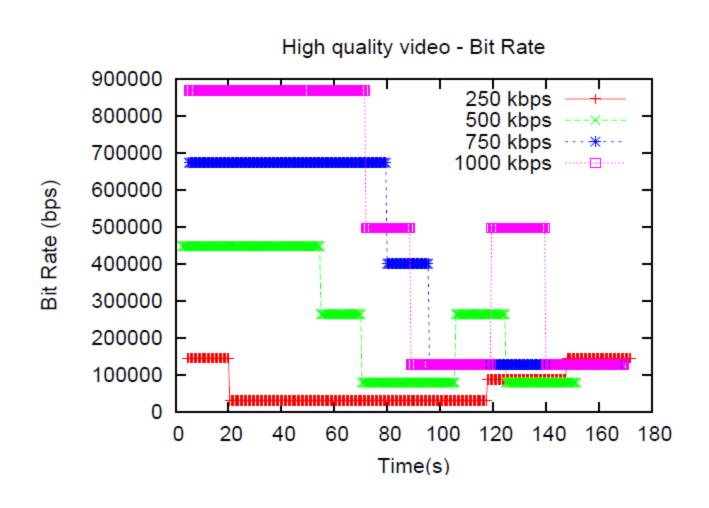


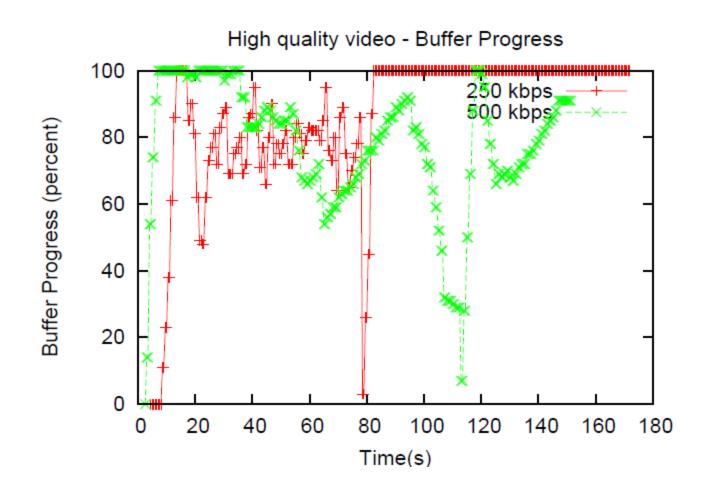
Frame rate – High quality video

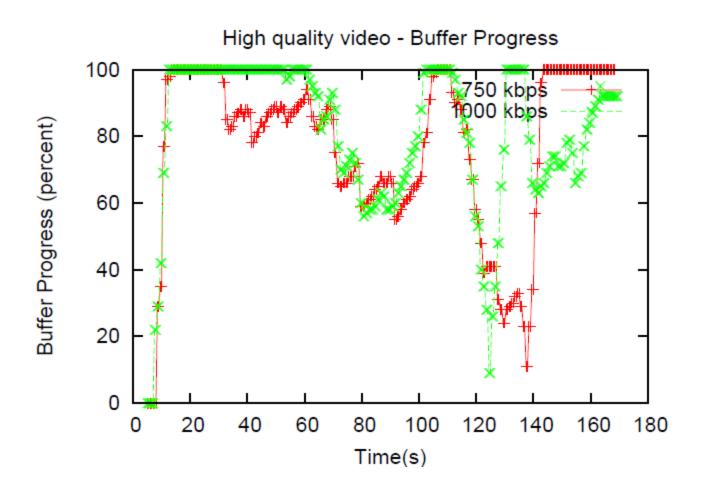


Orb does Temporal Scaling

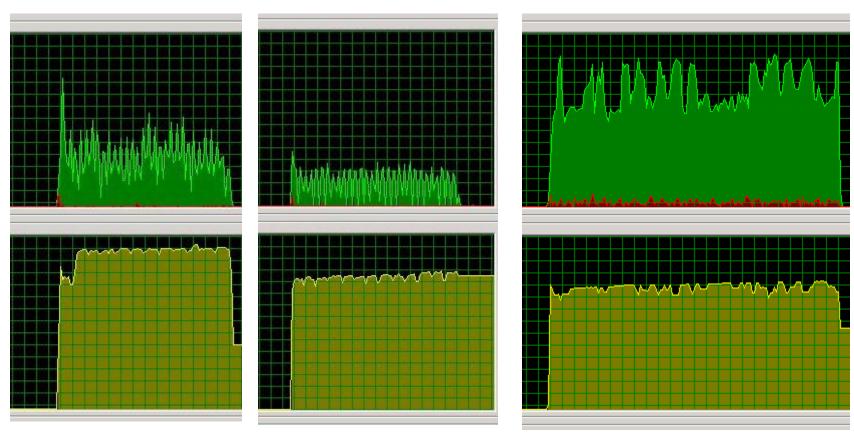

Bit rate – Low quality video


Buffer Progress – Low quality video


Buffer Progress – Low quality video


Bit rate – High quality video

Buffer Progress – High quality video


Buffer Progress – High quality video

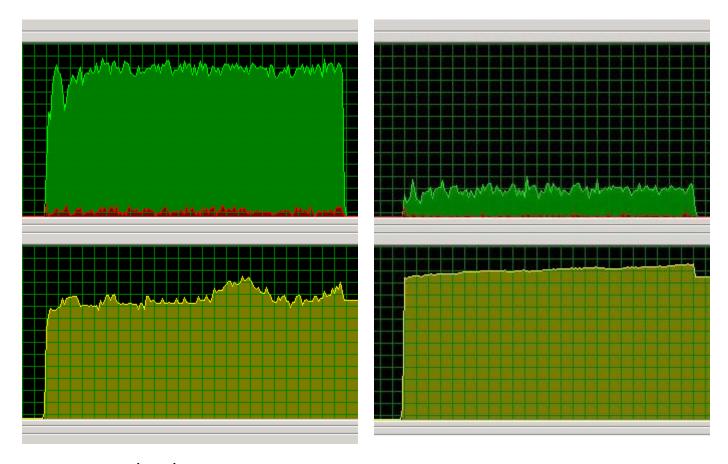
CPU Usage at the Host PC

- Orb uses ffmpeg library for real-time transcoding to suit the network conditions.
- We measured the CPU usage at the Host PC for multiple source and destination formats.

CPU Usage at the Host PC

Src: FLV 320x214 Dest: WMV

320x208


Src: FLV 320x214 Dest: FLV 312x208

Src: WMV (HQ)

1280x720 Dest: FLV

296x168

CPU Usage at the Host PC

Src: WMV (HQ)

1280x720 Dest: WMV 296x168 Src: WMV 320x240 Dest: FLV 312x208

Conclusion

- Host upstream capacity crucial for video performance.
- Orb adapts to change in bandwidth
 - Bandwidth less than encoded bit rate
 - Reduces Frame rate (Temporal scaling)
 - Bandwidth more than encoded bit rate
 - Sends at a higher rate
- Host PC does transcoding
 - Significant drain on CPU and memory

Overview

• What is Orb?

Why to study Orb?

Experiments

Future Work

Future Work

- Study video quality for different source and destination formats like flash, mov.
- Measure the impact of loss and delay for different bandwidth settings.
- Compare with Slingbox, Location free devices.

Thank You Questions?