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The problem of congestion control

at which speed should Sender X inject data into the network?
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• No central knowledge of the capacity of the 

equipment installed

• No central knowledge of the topology

• The answer depends on the total demands

• No central coordination point between senders

• Everything varies: demands, topology, capacity

The problem of congestion control

at which speed should Sender X inject data into the network?
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TCP Reno (1988)

• On each acknowledgement received in a round trip time in which 

congestion has not been detected

cwnd <- cwnd + 1/cwnd

• On the first detection of congestion in a given round trip time

cwnd <- cwnd – 0.5 * cwnd

• This is called Additive Increase, Multiplicative Decrease (AIMD)
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TCP Reno (1988)

[from Scalable TCP, by Tom Kelly] 6



The problem of large bandwidth-delay product
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The problem of large bandwidth-delay product

an example

• 1 Gbps bandwidth, 200 ms round trip time

• Bandwidth-delay product of 17000 packets

• After a congestion event, cwnd = 8500

• It takes 8500 round trip times to re-acquire 1 Gbps

• 8500 * 0.2 second = 1700 seconds. That’s 28 minutes!

Requires extremely low loss rate
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The essence of the problem

• Congestion control is a search problem

• You get some feedback once every RTT

• It’s only 1 bit of feedback

• And it’s noisy

9



Sources of noise

• Wireless (drops do not imply congestion)

• Background traffic

• Reverse traffic

• Oscillations
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Stay at 1 bit - be more aggressive

Find new sources of information

Query the capacity explicitly

11



Be more aggressive – AIMD becomes MIMD
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Be more aggressive

cwnd <- cwnd + A

cwnd <- cwnd – B * cwnd
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Be more aggressive
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Dumbbell topology, reserve traffic, background Web traffic, different RTT
[from Mascolo nd Vacirca, 2007]
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Be more aggressive -- Conclusions

• Quickly leads to instabilities

• Clobbers less aggressive streams (Reno)

• RTT unfairness remains 
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More information – Delay-based
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More information – FAST TCP 

by Chen Jin, David X. Wei, Steven H. Low, at Caltech
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More information – Conclusion

• Delays alone is too mild -- they gets clobbered by Reno

• TCP Fusion and TCP Compound mix loss & delay
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The Internet Today

• Linux

– Has used TCP CUBIC since 2.6.19 (Nov 2006)

• Windows

– Has used TCP Compound since Vista
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Be more aggressive
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More information -- RAPID

RAPID: Shrinking the Congestion-control 
Timescale
Vishnu Konda and Jasleen Kaur
University of North Carolina at Chapel Hill 29



More information -- RAPID
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Conclusions

• A lot of effort spent tuning drop-based congestion control 

(with no definite result)

• Obtaining additional sources of information helps a lot

• Explicit congestion control is now feasible
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