
Recent Research in Congestion Control

The problem of high bandwidth-delay product connections

By Guillaume Marceau
Presented for WPI CS577, Advanced Computer Networks
December 8, 2009

1

The problem of congestion control

at which speed should Sender X inject data into the network?

Sender 1

Sender 2

Sender 3

Sender 4

.

.

.

2

• No central knowledge of the capacity of the

equipment installed

• No central knowledge of the topology

• The answer depends on the total demands

• No central coordination point between senders

• Everything varies: demands, topology, capacity

The problem of congestion control

at which speed should Sender X inject data into the network?

3

4

TCP Reno (1988)

• On each acknowledgement received in a round trip time in which

congestion has not been detected

cwnd <- cwnd + 1/cwnd

• On the first detection of congestion in a given round trip time

cwnd <- cwnd – 0.5 * cwnd

• This is called Additive Increase, Multiplicative Decrease (AIMD)

5

TCP Reno (1988)

[from Scalable TCP, by Tom Kelly] 6

The problem of large bandwidth-delay product

7

The problem of large bandwidth-delay product

an example

• 1 Gbps bandwidth, 200 ms round trip time

• Bandwidth-delay product of 17000 packets

• After a congestion event, cwnd = 8500

• It takes 8500 round trip times to re-acquire 1 Gbps

• 8500 * 0.2 second = 1700 seconds. That’s 28 minutes!

Requires extremely low loss rate

8

The essence of the problem

• Congestion control is a search problem

• You get some feedback once every RTT

• It’s only 1 bit of feedback

• And it’s noisy

9

Sources of noise

• Wireless (drops do not imply congestion)

• Background traffic

• Reverse traffic

• Oscillations

10

Stay at 1 bit - be more aggressive

Find new sources of information

Query the capacity explicitly

11

Be more aggressive – AIMD becomes MIMD

12

Be more aggressive

cwnd <- cwnd + A

cwnd <- cwnd – B * cwnd

13

Be more aggressive

TCP Westwood, ‘01

TCP Westwood+ ‘02

Scalable TCP ‘03

High-speed TCP ‘03

Hamilton TCP ‘04

BIC ‘04

CUBIC ‘05

More Information

delay

Vegas ‘94

Fast ‘04

drop + delay

Compound ‘06

Fusion ’07

other sources

Peach

Peach+

RAPID ‘09

Query Explicitly

XCP ‘02

XCP-b ‘06

VCP ‘08

BMCC ‘09

14

15

16

17

18

19

20

21

Dumbbell topology, reserve traffic, background Web traffic, different RTT
[from Mascolo nd Vacirca, 2007]

22

Be more aggressive -- Conclusions

• Quickly leads to instabilities

• Clobbers less aggressive streams (Reno)

• RTT unfairness remains

23

More information – Delay-based

24

More information – FAST TCP

by Chen Jin, David X. Wei, Steven H. Low, at Caltech

25

More information – Conclusion

• Delays alone is too mild -- they gets clobbered by Reno

• TCP Fusion and TCP Compound mix loss & delay

26

The Internet Today

• Linux

– Has used TCP CUBIC since 2.6.19 (Nov 2006)

• Windows

– Has used TCP Compound since Vista

27

Be more aggressive

TCP Westwood, ‘01

TCP Westwood+ ‘02

Scalable TCP ‘03

High-speed TCP ‘03

Hamilton TCP ‘04

BIC ‘04

CUBIC ‘05

More Information

delay

Vegas ‘94

Fast ‘04

drop + delay

Compound ‘06

Fusion ’07

other sources

Peach ‘01

Peach+ ‘02

RAPID ‘09

Query Explicitly

XCP ‘02

XCP-b ‘06

VCP ‘08

BMCC ‘09

28

More information -- RAPID

RAPID: Shrinking the Congestion-control
Timescale
Vishnu Konda and Jasleen Kaur
University of North Carolina at Chapel Hill 29

More information -- RAPID

30

Conclusions

• A lot of effort spent tuning drop-based congestion control

(with no definite result)

• Obtaining additional sources of information helps a lot

• Explicit congestion control is now feasible

31

