
Congestion Control for High Bandwidth-Delay Product

Networks

XCP, the Explicit Control Protocol
SIGCOMM '02
by Diana Katabi, MIT-LCS, dk@mit.edu,
Mark Handley, ICSI, mjh@icsi.berkeley.edu
Charlie Rohrs, Tellabs, crhors@mit.edu

Presented by Guillaume Marceau for WPI CS577
on September 28, 2009

xcp - talk.nb 1

TCP is blind

TCP tries to discover the amount of bandwidth available, but it is blind
Packet drop are the only feedback, which ...

è ... is binary (drop/no drop)

è ... is ambiguous (caused by congestion or by faults)

è ... is delayed (must wait a full timeout before declaring a drop)

This has for consequence that ...

è TCP oscillates at high delay bandwidth product

è TCP's slow start is slow, which is painful at large b×d

è TCP is biased against flows with large rtt

Can't the routers just tell the sender how much bandwidth is available and be done with it?

xcp - talk.nb 2

TCP oscillates

xcp - talk.nb 3

xcp - talk.nb 4

Outline of the talk

The problem with TCP

Intuitive overview XCP, with pictures �

The math of XCP

è The efficiency controller (in three steps)

è The fairness controller

è Version I, Egalitarian

è Version II, Proportional

è Version III, Mix of both

Charts of the simulation results

xcp - talk.nb 5

xcp - talk.nb 6

xcp - talk.nb 7

xcp - talk.nb 8

xcp - talk.nb 9

xcp - talk.nb 10

xcp - talk.nb 11

xcp - talk.nb 12

xcp - talk.nb 13

xcp - talk.nb 14

xcp - talk.nb 15

xcp - talk.nb 16

XCP is built in two parts

The Efficiency Controller, responsible for,

è S: the total amount of feedback given, as an aggregate of all flows

è Φ: adjustments for standing queue and control stability

è Calling out to the fairness contoller to get the Ξ j

è H_feedback: spread the feedback across many packets

The Fairness Controller, responsible for,

è Computing Ξ j to acheive fainess, or any some performance objective

xcp - talk.nb 17

Outline of the talk

The problem with TCP

Intuitive overview XCP, with pictures

The math of XCP �

è The efficiency controller (in three steps)

è The fairness controller

è Version I, Egalitarian

è Version II, Proportional

è Version III, Mix of both

Charts of the simulation results

xcp - talk.nb 18

The Efficiency Controller

(How I understood it anyway, from the bottom up)

xcp - talk.nb 19

The Efficiency Controller, Step 1, Control throughput in aggregate

At its most simple, the feedback is the difference between the capacity and the usage.

S = capacity - offeredLoad H* S is for Surplus @bytes�secD *L
This is the aggregate feedback for all flow. But this is a control system, so you don't want to commit all at once (avoid shower burns).

ΦT = Α × S H* ΦT is for Total Feedback @bytes�secD,
0 < Α < 1 is a control damper,

think Zeno's router algorithm *L
Reserve some bandwidth to get rid of any standing queue in the buffer.

ΦT = Α × S - Β × Q � d H* Q is the standing queue size @bytesD,
d is the control delay @secondsD,
Β another control damper *L

The standing queue is defined as the minimum size of the queue during the previous control period.

The control delay is defined as the average round trip time of all the packets during the previous control period.

xcp - talk.nb 20

The Efficiency Controller, Step 2, Allocate the aggregate feedback

Ask some other module (the fairness controller) to split the feedback in some fair way.

ân Ξj = 1 H* Ξj is the proportion of throughput feedback

assigned to the jth flow,

n is the number of flows *L
Then split it equally across the packets.

H_feedback
T,j,i

= IΞj × ΦTM � Ej H* Ej is the expected number of

packets from flow j during the next

control period *L
Hack alert: They assume that the current packet is representative of the whole flow, or that it all averages out in the end. That is, assume that

Ej =
cwndi

si
×

d

rtti
H* The number of packet in the cwnd

´ the number of cwnd's in

the control period *L
H_feedback

T,j,i
= IΞj × ΦTM � cwndi

si
×

d

rtti

xcp - talk.nb 21

The Efficiency Controller, Step 3, Convert Dthroughput to Dcwnd

Rates are hard to measure. Beside, rates at the sender are controlled by the congestion window, might as well control the senders cwnd's, it's
more direct.
Recall,

cwnd = bandwidth ´ delay H* cwnds are set to the b-d product *L

Then converting the aggregate feedback from throughput to congestion window,

ΦT = Α × S - Β × Q � d

means multiplying by d on both sides,

Φ = Α × d × S - Β × Q

Similarly, convert the per-packet feedback from from throughput to congestion window,

H_feedback
j,i

= H_feedback
T,j,i

× rtti H* assuming the packet is representative of the whole.

aka, rtti » rttj *L

H_feedback
j,i

= IΞj × ΦTM � cwndi

si
×

d

rtti
× rtti

H_feedback
j,i

= Ξj ×
ΦT × rtti

2
× si

d × cwndi

xcp - talk.nb 22

The Fairness Controller

(Choosing Ξ j wisely)

xcp - talk.nb 23

Version I, Egalitarian feedback

A first intuition of fairness might be, set all the Ξ j to the same value. Namely,

Ξ1 = Ξ2 =. .. = Ξn = Ξ =
1

n

But measuring n directly is hard. Let's try to find an indirect definition.

ΦT = â
i=0

L

H_feedback
T,j,i

H* L is the total number of packets

through the router during control period *L
Substitute the definition of feedbackT , j,i. Since all the flows have the same Ξ, we can drop the j subscript.

ΦT = â
i=0

L

Ξ ×
ΦT × rtti × si

d × cwndi

ΦT =
Ξ × ΦT

d
× â
i=0

L rtti × si

cwndi

Ξ =
d

Úi=0

L J rtti×si

cwndi
N

H* which is an odd way to measure
1

n
*L

xcp - talk.nb 24

Version I, Egalitarian feedback (continued)

H_feedback
i

= Ξ ×
ΦT × rtti

2
× si

d × cwndi

H_feedback
i

=
d

Úi=0

L J rtti×si

cwndi
N

×
ΦT × rtti

2
× si

d × cwndi

H_feedback
i

=
ΦT

Úi=0

L J rtti×si

cwndi
N

×
rtti

2
× si

cwndi
H* the d cancel *L

H_feedback
i

=
Φ

d × Úi=0

L J rtti×si

cwndi
N

×
rtti

2
× si

cwndi
H* with ΦT=

Φ

d
*L

Which is the formula in the paper for equal-Dthroughput feedback without shuffling.

Hack Alert: The left side of the dot refers to values from past packets, the right side of the dot refers the values taken from this packet's header.

xcp - talk.nb 25

Version II: Feedback proportional to throughput

Ξj = bandwidthj � offeredLoad

This is well-formed, ÚΞ j = 1, since Ún bandwidthj = offeredLoad. Then

Ξj =
cwndi

rtti
� offeredLoad

Same slight of hand, assume the packet is representative of the whole.

H_feedback
j,i

= Ξj ×
ΦT × rtti

2
× si

d × cwndi
H*recall the def. of feedback*L

H_feedback
i

=
cwndi

rtti × offeredLoad
×

ΦT × rtti
2

× si

d × cwndi
H*insert Ξj*L

H_feedback
i

=
1

offeredLoad
×

ΦT × rtti × si

d
H*cancel*L

H_feedback
i

=
1

Úsi
d

×
Φ × rtti × si

d2
H*def. of load and ΦT*L

H_feedback
i

=
Φ

d × Úsi
× Hrtti × siL H*cancel and regroup *L

Which is the formula in the paper for feedback µ throughput without shuffling.

Same Hack Alert: The left side of the dot refers to values from past packets, the right side of the dot refers the values taken FROM this
packet's header.

xcp - talk.nb 26

Version III : A bit of both

Version I, egalitarian feedback (equal Dthroughput for everyone) doesn't make sense for negatives feedback — you might be asking a flow to
go negative.

Version II, feedback µ throughput, doesn't make sense for positive feedback — you give the most boost to the already fast flows.

Thus Version III, mix of both, positive feedback is egalitarian, negative feedback is µ throughput.

posFeedbacki =
Max@Φ, 0D

d × Úi=0

L J rtti×si

cwndi
N

×
rtti

2
× si

cwndi

negFeedbacki =
Max@-Φ, 0D
d × Úsi

× Hrtti × siL

H_feedback
i

= posFeedbacki - negFeedbacki

Good news! If you oscillate between the two you converge to fairness!

Bad news! The whole point of this protocol is to kill oscillations!

xcp - talk.nb 27

Exploring convergence via oscillations

Φ@offeredLoad_, capacity_D := Α Hcapacity - offeredLoadL;
HfEgalitarian@offeredLoad_, capacity_, bandwidth_, n_D :=

Φ@offeredLoad, capacityD � n;

HfProportional@offeredLoad_, capacity_, bandwidth_, n_D :=

Φ@offeredLoad, capacityD bandwidth

offeredLoad
;

length@lst_D := Dimensions@lstD@@1DD;
XCPEgalitarian@bandwidths_D :=

Map@b Ì

b + HfEgalitarian@Apply@Plus, bandwidthsD, capacity, b, length@bandwidthsDD,
bandwidthsD;

XCPProportional@bandwidths_D :=

Map@b Ì

b + HfProportional@Apply@Plus, bandwidthsD, capacity, b, length@bandwidthsDD,
bandwidthsD;

convergeXCPfn@xcpFn_, init_D := Module@8tbl = Table@Nest@b Ì xcpFn@bD, init, tD, 8t, 0, 40<D<,
Append@Transpose@tblD, Map@lst Ì Apply@Plus, lstD, tblDDD;

XCPPlot@xcpFn_D :=

ListLinePlot@
convergeXCPfn@xcpFn, initD,
PlotStyle ® Append@Table@Thick, 8i, length@initD<D, 8Thin, Dashing@0.02D<D,
PlotRange ® 8Automatic, 8Automatic, Max@init, capacityD<<,
AxesLabel ® 8"iterations", "bandwidth"<

D;

xcp - talk.nb 28

Α = 0.4;

capacity = 50;

init = 810. , 20., 30., 40., 800.<;
8XCPPlot@XCPEgalitarianD, XCPPlot@XCPProportionalD<

:

10 20 30 40
iterations

200

400

600

800
bandwidth

,

10 20 30 40
iterations

200

400

600

800
bandwidth

>

xcp - talk.nb 29

init = 81. , 5.<;
8XCPPlot@XCPEgalitarianD, XCPPlot@XCPProportionalD<

:

10 20 30 40
iterations

10

20

30

40

50
bandwidth

,

10 20 30 40
iterations

10

20

30

40

50
bandwidth

>

XCPBoth@bandwidths_D :=

Hcapacity = capacity * 1.5;

Module@8b2 = XCPEgalitarian@bandwidthsD<,
capacity = capacity � 1.5 � 1.5;

Module@8b3 = XCPProportional@b2D<,
capacity = capacity * 1.5;

b3DDL;

xcp - talk.nb 30

init = 810. , 20., 30., 40., 200.<;
XCPPlot@XCPBothD

10 20 30 40
iterations

50

100

150

200
bandwidth

init = 81. , 5.<;
XCPPlot@XCPBothD

10 20 30 40
iterations

10

20

30

40

50
bandwidth

xcp - talk.nb 31

Forcing a small amount of oscillation

The solution: re-introduce oscillation into the system in a controlled manner

h = Max@0, Γ × y - Abs@ΦDD
where

Γ = 0.1 H* the size of the oscillation desired *L
y = offeredLoad × d H* the trafic during a control period*L

namely, unless we converged on a fair distribution, some minimum amount of traffic must always be trifled with, if not by Φ, then by h.

posFeedbacki =
h + Max@Φ, 0D

d × Úi=0

L J rtti×si

cwndi
N

×
rtti

2
× si

cwndi

negFeedbacki =
h + Max@-Φ, 0D

d × Úsi
× Hrtti × siL

H_feedback
i

= posFeedbacki - negFeedbacki

xcp - talk.nb 32

The magical h shuffle

h@Γ_, offeredLoad_, capacity_D :=

Max@0, Γ offeredLoad - Abs@capacity - offeredLoadDD;
Φ@offeredLoad_, capacity_D :=

Α Hcapacity - offeredLoadL;
neg@Γ_, offeredLoad_, capacity_D :=

h@Γ, offeredLoad, capacityD + Max@0, -Φ@offeredLoad, capacityDD;
pos@Γ_, offeredLoad_, capacity_D :=

h@Γ, offeredLoad, capacityD + Max@0, Φ@offeredLoad, capacityDD;
Hf@Γ_, offeredLoad_, capacity_, bandwidth_, n_D :=

pos@Γ, offeredLoad, capacityD � n - neg@Γ, offeredLoad, capacityD bandwidth

offeredLoad
;

Hf'@Γ_, surplus_, fairRatio_, n_D :=

Hf@Γ, capacity - surplus, capacity, fairRatio � n * capacity, nD;
Α = 1.0;

capacity = 50;

Manipulate@Plot@
Hf'@Γ, surplus, fairRatio, nD,
8surplus, -capacity, capacity<,
PlotStyle ® Thick,

AxesLabel ® 8"Surplus", "Feedback"<D,
88fairRatio, 0<, 0, 4, 0.1, Appearance ® "Labeled"<,
88n, 2<, 1, 10, 1, Appearance ® "Labeled"<,
88Γ, 0<, 0, 0.9, 0.05, Appearance ® "Labeled"<D

fairRatio 0

n 2

Γ 0.1

-40 -20 20 40
Surplus

2

4

6

8

10

Feedback

xcp - talk.nb 33

Convergence to fairness

XCP@Γ_, bandwidths_D :=

Map@b Ì

b + Hf@Γ, Apply@Plus, bandwidthsD, capacity, b, length@bandwidthsDD,
bandwidthsD;

convergeXCP@Γ_, init_D := Module@8tbl = Table@Nest@b Ì XCP@Γ, bD, init, tD, 8t, 0, 40<D<,
Append@Transpose@tblD, Map@lst Ì Apply@Plus, lstD, tblDDD;

init = 810. , 20., 30., 40., 200.<;
Α = 0.4;

Manipulate@
ListLinePlot@
convergeXCP@Γ, initD,
PlotStyle ® Append@Table@Thick, 85<D, ThinD,
PlotRange ® 8Automatic, 80, 200<<,
AxesLabel ® 8"iterations", "bandwidth"<

D,
88Γ, 0.1<, 0, 0.5, Appearance ® "Labeled"<D

Γ 0.1

0 10 20 30 40
iterations

50

100

150

200
bandwidth

xcp - talk.nb 34

Outline of the talk

The problem with TCP

Intuitive overview XCP, with pictures

The math of XCP

è The efficiency controller (in three steps)

è The fairness controller

è Version I, Egalitarian

è Version II, Proportional

è Version III, Mix of both

Charts of the simulation results �

xcp - talk.nb 35

Simulation results

xcp - talk.nb 36

Simulation topologies

xcp - talk.nb 37

Fixed: Bottleneck topology, 50 flows forwards, 50 flows reversewards, RTT is 80ms
Vary: Link bandwidth

Largest bandwidth-delay is 320 Megs · seconds (!)
Longest queue size is 2.3 Megs at 1Meg/s (2.3 seconds to clear)
150 Meg/s comes back later

xcp - talk.nb 38

Fixed: Bottleneck topology, 50 flows forwards, 50 flows reversewards, Link is 150Meg/s
Vary: RTT

xcp - talk.nb 39

Fixed: Bottleneck topology, RTT is 80ms, Link is 150Meg/s
Vary: Number of flows

xcp - talk.nb 40

The war between mice and elephants

xcp - talk.nb 41

New Slide

xcp - talk.nb 42

New Slide

xcp - talk.nb 43

Quick convergence to fairness

xcp - talk.nb 44

Quick and stable asjustment to suddent changes

xcp - talk.nb 45

Non-fair bandwidth allocation, assign Ξi µ $

xcp - talk.nb 46

XCP is TCP-friendly

xcp - talk.nb 47

Robustness to high variance to round trip time

This is not a good challenge of this weakness of the design of XCP. Large variance in RTT will make it difficult for XCP to adjust to the
dynamic of flows which are far away from the average RTT. Yet, there are no dynamics in this simulation.

xcp - talk.nb 48

