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TCPis blind

\

TCP triesto discover the amount of bandwidth available, but it is blind
Packet drop are the only feedback, which ...

e ... ishinary (drop/no drop)
e ... isambiguous (caused by congestion or by faults)

e ... isdelayed (must wait afull timeout before declaring a drop)

This has for consequence that ...
e TCP oscillates at high delay bandwidth product
e TCPsslow start isslow, which is painful at large bxd
e TCPisbiased against flowswith large rtt

Can't the routers just tell the sender how much bandwidth is available and be done with it?
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TCP oscillates
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Outline of the talk
The problem with TCP
Intuitive overview XCP, with pictures

The math of XCP

e Theefficiency controller (in three steps)
e Thefairness controller

e Version |, Egalitarian

e Version I, Proportional

e Version I, Mix of both

Charts of the simulation results
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XCP is built in two parts
The Efficiency Controller, responsible for,

e S: thetotal amount of feedback given, as an aggregate of al flows

¢: adjustments for standing queue and control stability

Calling out to the fairness contoller to get the &;

H_feedback: spread the feedback across many packets

The Fairness Controller, responsible for,

e Computing £; to acheive fainess, or any some performance objective
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Outline of the talk
The problem with TCP
Intuitive overview XCP, with pictures

The math of XCP —

e Theefficiency controller (in three steps)
e Thefairness controller

e Version |, Egalitarian

e Version I, Proportional

e Version I, Mix of both

Charts of the simulation results
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The Efficiency Controller

(How | understood it anyway, from the bottom up)
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The Efficiency Controller, Step 1, Control throughput in aggregate
At its most ssimple, the feedback is the difference between the capacity and the usage.
S = capacity - offeredLoad (x S is for Surplus [bytes/sec] x)
This isthe aggregate feedback for all flow. But thisis a control system, so you don't want to commit all at once (avoid shower burns).

¢r = a-S (» ¢r is for Total Feedback [bytes/sec],
0 <a<1is a control danper,
think Zeno's router algorithm =)

Reserve some bandwidth to get rid of any standing queue in the buffer.

¢r = a-S-B-Q/d (x Qis the standing queue size [bytes],
d is the control delay [seconds],
B anot her control danper *)

The standing queue is defined as the minimum size of the queue during the previous control period.

The control delay is defined as the average round trip time of all the packets during the previous control period.
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The Efficiency Controller, Step 2, Allocate the aggregate feedback

Ask some other module (the fairness controller) to split the feedback in some fair way.

n

Z.gj =1 (x» & is the proportion of throughput feedback
assigned to the jth flow,
nis the nunber of flows *)

Then split it equally across the packets.

H_feedbacij [ = (§j . ¢T) / E (+ E is the expected nunber of
packets from flow j during the next

control period =)

Hack alert: They assume that the current packet is representative of the whole flow, or that it all averages out in the end. That is, assume that

cwnd; d
E = . (* The number of packet in the cwnd
Sj ret;
x the nunber of cwnd's in
the control period =)
H_f eedback ( ) owndi - _d
| fee ac..:g-.¢T/ .
T ! [ Sj rtt; ]
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The Efficiency Controller, Step 3, Convert Athroughput to Acwnd

Rates are hard to measure. Beside, rates at the sender are controlled by the congestion window, might as well control the senders cwnd's, it's
more direct.
Recall,

cwnd = bandwidth x delay (x cwnds are set to the b-d product =)

Then converting the aggregate feedback from throughput to congestion window,
¢1r =a-S-B8-Q/d
means multiplying by d on both sides,

$=a-d-S-B-Q

Similarly, convert the per-packet feedback from from throughput to congestion window,

H_feedbackj = H_feedbackTJ. ;- rtti (% assunming the packet is representative of the whole.

aka, rtt; = rtt; =)

H f eedbackj i

]
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The Fairness Controller

(Choosing &; wisely)
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Version |, Egalitarian feedback

A first intuition of fairness might be, set all the £; to the same value. Namely,
§1=6=. .. =& = & =
But measuring n directly is hard. Let'stry to find an indirect definition.

L
é1 = Z H f eedbackT’j ’
i =0

i (¥ L is the total nunber of packets

through the router during control period x)

Substitute the definition of feedbackr ;;. Since all the flows have the same &, we can drop the j subscript.

or = D€

i =0
-1 & (rtti -s;
ot = . ( ]
d o\ cwnd;

= ———— (x which is an odd way to neasure % *)

"( ¢T'rtti'si]

d - cwnd;
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Version |, Egalitarian feedback (continued)

o -rtti? s
H feedback, = ¢ - —
d - cwnd;
d o7 - rttiz - S
H_f eedback, = . ;" -
L rtt; -si - Cwna;
Zizo ( cwnd; )
ot reti? s
H_feedback, = - . 3 (» the d cancel =«)
rtt; -si cwna;i
Zi:o ( cwnd; )
¢ ret;? - s N
H_feedbacki = . 3 (* with ¢T=E *)
L rtt; -s; cwna;i
d - %o (o)

Whichisthe formulain the paper for equal-Athroughput feedback without shuffling.

Hack Alert: The left side of the dot refers to values from past packets, the right side of the dot refers the values taken from this packet's header.
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Version II: Feedback proportional to throughput
& = bandwi dth; / of f eredLoad

Thisiswell-formed, 3¢ = 1, since 3" bandwi dt h; = of f er edLoad. Then

cwnd;

§ = / of f er edLoad

rtt;

Same dlight of hand, assume the packet is representative of the whole.

o1 -rtt? s

H feedback, . =& - ——————— (*recall the def. of feedbacks)
I d - cwnd;
cwnd; ér-rtti? - s
H_f eedback; = . (*insert & =)
rtt; - of feredLoad d - cwnd;
1 ¢r-rtt; - s;
H_f eedback; = . (xcancel x)
of f er edLoad d
1 ¢ -rtt; -s;
H_f eedback; = - ————— (xdef. of load and ¢r*)
I d2
d
H_f eedback; = - (rtt; -sj) (xcancel and regroup =)
d. ZSi

Which isthe formulain the paper for feedback o throughput without shuffling.

Same Hack Alert: The left side of the dot refers to values from past packets, the right side of the dot refers the values taken FROM this

packet's header.

xcp - talk.nb |26



Version Il : A bit of both

Version |, egalitarian feedback (equal Athroughput for everyone) doesn't make sense for negatives feedback — you might be asking a flow to

go negative.

Version |1, feedback « throughput, doesn't make sense for positive feedback — you give the most boost to the already fast flows.

Thus Version 111, mix of both, positive feedback is egalitarian, negative feedback is « throughput.

Max [¢, O] ret;2 - s
posFeedback; = . ,
L rtt; s cwnd;
d-Zio ( cwnd, )
Max [-¢, O]
negFeedback; = ————— . (rtt; -s;)
d-. ZSi

H feedback, = posFeedback; - negFeedback;

Good news! If you oscillate between the two you converge to fairness!

Bad news! The whole point of this protocol isto kill oscillations!
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Exploring convergence via oscillations

¢[of feredLoad_, capacity_] :=a (capacity -of feredLoad);

Hf Egal i tari an [of f eredLoad_, capacity_, bandwidth_, n_] : =
¢[of feredLoad, capacity] /n;

Hf Proportional [of feredLoad_, capacity_, bandwidth_, n_]:=

) bandwi dt h
¢[of feredLoad, capacity] — ——;
of f er edLoad

length[lst_]1:=Dinmensions[lst][[1]];

XCPEgal i tarian[bandwidths_1] : =
Map [b —
b + Hf Egal i tari an [Appl y [Pl us, bandwi dths], capacity, b, | ength[bandwi dths]],
bandwi dt hs ];
XCPProportional [bandwi dths_1] : =
Map [b —
b + Hf Proporti onal [Apply [Pl us, bandw dths], capacity, b, I ength[bandw dths]],
bandwi dt hs ];

conver gexXCPfn [xcpFn_, init_]1:= Mdule[{tbl = Tabl e[Nest [b — xcpFn[b], init, t], {t, 0, 40}1},
Append [Tr anspose [tbl ], Map[lst — Apply[Plus, Ist], tbl]]1];

XCPPI ot [xcpFn_1] : =
Li stLi nePl ot [
conver geXCPf n [xcpFn, init],
Pl ot Styl e - Append [Tabl e[Thick, {i, length[init]}], {Thin, Dashing[0.02]}1,
Pl ot Range -» {Automatic, {Autonatic, Max[init, capacity]}},
AxeslLabel - {"iterations", "bandw dth"}
1;
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a=0.4;

capacity = 50;

init = {10., 20., 30., 40., 800. };

{XCPPI ot [XCPEgal i tarian], XCPPl ot [XCPProportional ]}
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{400:—
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600

400

200
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init = {1., 5.};
{XCPPI ot [XCPEgal i tarian], XCPPl ot [XCPProportional ]}

bandwidth
50 e

a0k

20; |

10} |

L w10 v 0 1 terations
40

bandwidth
50 e

40l
a0l

20 |

| . . . . ! . . L L L iterations
0

XCPBot h [bandwi dths_] : =
(capacity =capacity *=1.5;

Modul e [ {b2 = XCPEgal i t ari an [bandwi dt hs ]},
capacity = capacity/ 1.5/71.5;
Modul e [{b3 = XCPProportional [b2]},

capacity = capacity = 1.5;
b311);
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init = {10., 20., 30., 40., 200. };:
XCPPI ot [XCPBot h]

bandwidth
200

150

100

50

_ iterations
40
init = {1., 5.};

XCPPI ot [XCPBot h]

bandwidth
50~

30- |

20

10+ |

! : : iterations
20 30 40
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Forcing a small amount of oscillation

The solution: re-introduce oscillation into the system in a controlled manner

h = Max[0, ¥ -y - Abs[é]]
where
7 =
y = offeredLoad - d (* the trafic during a control

0.1 (» the size of the oscillation desired =)

peri odx)

namely, unless we converged on afair distribution, some minimum amount of traffic must always be trifled with, if not by ¢, then by h.

h + Max [¢, 0] retei? -sg

posFeedback; = 3
L rtt; s cwnda;
d- Zi:O ( cwnd; )
h+Mx[-¢, 0]
negFeedback; = — - (rtt; -
d- s

H feedback, = posFeedback; - negFeedback;
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The magical h shuffle

h[y_, of feredLoad_, capacity_1] :=

Max [0, yof feredLoad - Abs[capacity - offeredLoad]];

¢[of feredLoad_, capacity_1] : =
a (capacity -of feredLoad);
neg[y_, offeredLoad_, capacity_1]:=

h[y, offeredLoad, capacity] + Max [0, -¢[of feredLoad, capacity]];

pos[y_, offeredLoad_, capacity_1: =

h[y, offeredLoad, capacity] + Max [0, ¢[of feredLoad, capacity]];

Hf [y_, of feredLoad_, capacity_, bandwidth_, n_]:=

pos [y, of feredLoad, capacity] /n-neg[y, offeredLoad, capacity]

Hf ' [y_, surplus_, fairRatio_, n_]:=

Hf [y, capacity -surplus, capacity, fairRatio /n=xcapacity, nJ;

a=1. 0;
capacity = 50;
Mani pul at e [Pl ot [
Hf ' [y, surplus, fairRatio, nl,
{surplus, -capacity, capacity},
Pl ot Styl e » Thi ck,
AxesLabel - {"Surplus", "Feedback"}],
{{fairRatio, 0}, O, 4, 0.1, Appearance - "Label ed"},
{{n, 2}, 1, 10, 1, Appearance - "Label ed"},
{{¥, 0}, 0, 0.9, 0.05, Appearance - "Label ed"}]

fairRatio a@ 0

n

CJ

Feedback

Surplus

of feredLoad
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Convergence to fairness

XCP[y_, bandwidths_1] : =
Map [b —

b + Hf [y, Apply[Plus, bandw dths], capacity, b, I ength[bandw dths]],

bandwi dt hs;

convergeXCP[y_, init_]:=Mdule[{tbl = Tabl e[Nest [b — XCP[y, bl, init, t], {t, 0, 40}1},

Append [Transpose [tbl ], Map[l st +— Apply[Plus, Ist], tbl]117;

init = {10., 20., 30., 40., 200. };
a=0.4;
Mani pul ate [
Li stLinePl ot [
convergeXCP [y, init],
Pl ot Styl e » Append [Tabl e [Thi ck, {5}], Thin],
Pl ot Range -» {Automatic, {0, 200}},
AxeslLabel - {"iterations", "bandw dth"}
1,
{{¥, 0.1}, 0, 0.5, Appearance - "Label ed" }]

0.1

()

bandwidth
200 - |

M —L L | jterations
40
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Outline of the talk
The problem with TCP
Intuitive overview XCP, with pictures

The math of XCP

e Theefficiency controller (in three steps)
e Thefairness controller

e Version |, Egalitarian

e Version I, Proportional

e Version I, Mix of both

Charts of the simulation results

xcp - talk.nb |35



Simulation results
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Simulation topologies

S

Bottleneck
So
________ ®R.R,,....R,
V Reverse \!
Traffic
Sy

Figure 2: A single bottleneck topology.

Bottleneck

Figure 3: A parking lot topology.
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Fixed: Bottleneck topology, 50 flows forwards, 50 flows reversewards, RTT is 80ms

Vary: Link bandwidth

Largest bandwidth-delay is 320 Megs - seconds (1)
Longest queue sizeis 2.3 Megs at IMeg/s (2.3 secondsto clear)

150 Meg/s comes back later

Bottleneck Utilization

I i
1000 1500 2000 2500 3000 3500 4000
Bottlenack Capacity (Mb/s)

XCP =

& RED =
CsSFQ a

REM B 4
ANO o

Average Bollleneck Queue (packels)

1000 1500 2000 2500 3000 3500 4000
Bottlenack Capacity (Mb/s)

Boltleneck Drops (packets)

1000 1500 2000 2500 3000 3500 4000
Bottleneck Capacity (Mb/s)

Figure 4: XCP significantly outperforms TCP in high band-
width environments. The graphs compare the efficiency of XCP
with that of TCP over RED, CSFQ, REM, and AV(Q as a func-

tion of capacity.
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Fixed: Bottleneck topology, 50 flows forwards, 50 flows reversewards, Link is 150Meg/s
Vary: RTT
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Figure 5: XCP significantly outperforms TCP in high delay en-
vironments. The graphs compare bottleneck utilization, aver-
age queue, and number of drops as round trip delay increases
when flows are XCPs and when they are TCPs over RED,
CSFQ, REM, and AVQ.
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Fixed: Bottleneck topology, RTT is 80ms, Link is 150Meg/s
Vary: Number of flows
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(¢) Number of FTP Flows

Figure 6: XCP is efficient with any number of flows. The
graphs compare the efficiency of XCP and TCP with various

queuing schemes as a function of the number of flows.
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The war between mice and elephants

o B s R
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% 07 :
o
s 06 XCP o
0.5 RED ® 4
’ CSFQ &
0.4 REM & 4
AVQ e
DS 1 1 | 1
0 200 400 600 800
(&} Mice Arrival Rate (new mice /zec)
2000 T T T
E‘ Beveennnannn .
3]
T 1500 |
g s A a
o BN
2 1000 Fa w
5 3 @,
o ; _‘_,a.r'a'"-ﬁ--" mmmmm =B Ty e
E 500 g&-~ e
] e T :
z e - e - S M "
Z DE WX i -
0 200 400 600
(b} Mice Arrival Rate (new mice /sec)
160000 T T T
w 120000
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]
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(c) Mice Arrival Rate (new mice /sec)

1000

Figure 7: XCP is robust and efficient in environments with ar-
rivals and departures of short web-like flows. The graphs com-
pare the efficiency of XCP to that of TCP over various queuing
schemes as a function of the arrival rate of web-like flows.
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New Slide
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(&1
T

(b} Different-RTT Flow 1D

Figure 8: XCP is fair to both equal and different RTT flows.
The graphs compare XCP’s Fairness to that of TCP over RED,
CSFQ, REM, and AVQ. Graph (b) also shows XCP’s robustness
to environments with different RTTs.
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New Slide
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Figure 9: Simulation with multiple congested queues. Utiliza-
tion, average Queue size, and number of drops at nine consecu-
tive links (topology in Figure 3). Link 5 has the lowest capacity

along the path.
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Quick convergence to fairness
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Figure 10: XCP’s smooth convergence to high fairness, good
utilization, and small queue size. Five XCP flows share a 45
Mb/s bottleneck. They start their transfers at times 0, 2, 4, 6,

(c) Time (seconds)

and 8 seconds.
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Quick and stable asjustment to suddent changes
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Figure 11: XCP is more robust against sudden increase or decrease in traffic demands than TCP. Ten FTP flows share a bottleneck.
Attime¢ = 4 seconds, we start 100 additional Hows. At{ = 8 seconds, these 100 flows are suddenly stopped and the original 10 flows
are left to stabilize again.
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Non-fair bandwidth allocation, assign & o $
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Figure 12: Providing differential bandwidth allocation using
XCP. Three XCP flows each transferring a 10 Mbytes file over
a shared 10 Mb/s bottleneck. Flow 1° s price is 5, Flow 2" s
price is 10, and Flow 3" s price is 15. Throughput is averaged
over 200 ms (5 RTTs).
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XCP is TCP-friendly
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Figure 13: XCP is TCP-friendly.
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Robustness to high variance to round trip time

This is not a good challenge of this weakness of the design of XCP. Large variance in RTT will make it difficult for XCP to adjust to the
dynamic of flowswhich are far away from the average RTT. Y et, there are no dynamicsin this simulation.
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Figure 16: XCP robustness to high RTT variance. Two XCP
flows each transferring a 10 Mbytes file over a shared 45 Mb/s
bottleneck. Although the first low has an RTT of 20 ms and
the second flow has an RTT of 200 ms both flows converge to
the same throughput. Throughput is averaged over 200 ms in-
tervals.
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