
TCP
Congestion Control

Advanced Computer Networks: TCP Congestion Control 1

Principles of Congestion Control

Congestion:

• informally: “too many sources sending too much data

too fast for the network to handle”

• different from flow control!

• manifestations:

– lost packets (buffer overflow at routers)

– long delays (queueing in router buffers)

• a major problem in networking!

Advanced Computer Networks: TCP Congestion Control 2

Causes/Costs of Congestion

Scenario 1

• two senders, two

receivers

• one router, infinite

buffers

• no retransmission

• large delays

when congested

• maximum

achievable

throughput

unlimited shared

output link buffers

Host A

lin : original data

Host B

lout

Advanced Computer Networks: TCP Congestion Control 3

Causes/Costs of Congestion

Scenario 2
• one router, finite buffers

• sender retransmission of lost packet

finite shared output

link buffers

Host A lin : original

data

Host B

lout

l'in : original data, plus
retransmitted data

Advanced Computer Networks: TCP Congestion Control 4

• always: (goodput)

• “perfect” retransmission only when loss:

• retransmission of delayed (not lost) packet makes larger (than

perfect case) for same

l
in

l
out

=

l
in

l
out

>

l
inl

out

“costs” of congestion:

 more work (retransmissions) for a given “goodput”

 unneeded retransmissions: link carries multiple copies of packet

R/2

R/2
lin

l
o
u
t

b.

R/2

R/2
lin

l
o
u
t

a.

R/2

R/2
lin

l
o
u
t

c.

R/4

R/3

Causes/Costs of Congestion

Scenario 2

Advanced Computer Networks: TCP Congestion Control 5

Approaches towards Congestion Control

end-end congestion

control:

• no explicit feedback from

network

• congestion inferred from

end-system observed loss,

delay

• approach taken by TCP

network-assisted

congestion control:

• routers provide feedback to

end systems

– single bit indicating

congestion (SNA,

DECbit, TCP/IP ECN,

ATM)

– explicit rate sender

should use for sending.

Two broad approaches towards congestion control:

Advanced Computer Networks: TCP Congestion Control 6

Advanced Computer Networks: TCP Congestion Control 7

TCP
Congestion Control

Lecture material taken from

“Computer Networks A Systems Approach”,
Fourth Edition,Peterson and Davie,

Morgan Kaufmann, 2007.

Advanced Computer Networks: TCP Congestion Control 8

TCP Congestion Control

• Essential strategy :: The TCP host sends
packets into the network without a reservation
and then the host reacts to observable events.

• Originally TCP assumed FIFO queuing.

• Basic idea :: each source determines how
much capacity is available to a given flow in the
network.

• ACKs are used to ‘pace’ the transmission of
packets such that TCP is “self-clocking”.

Advanced Computer Networks: TCP Congestion Control 9

TCP Congestion Control

• Goal: TCP sender should transmit as fast as

possible, but without congesting network.

• issue - how to find rate just below congestion

level?

• Each TCP sender sets its window size, based

on implicit feedback:

• ACK segment received network is not

congested, so increase sending rate.

• lost segment - assume loss due to

congestion, so decrease sending rate.

K & R

TCP Congestion Control

• “probing for bandwidth”: increase transmission rate on

receipt of ACK, until eventually loss occurs, then decrease

transmission rate

• continue to increase on ACK, decrease on loss (since available

bandwidth is changing, depending on other connections in network).

ACKs being received,

so increase rate

X

X

X
X

X loss, so decrease rate

se
nd

in
g

ra
te

time

• Q: how fast to increase/decrease?

TCP’s

“sawtooth”

behavior

Advanced Computer Networks: TCP Congestion Control 10

K & R

Advanced Computer Networks: TCP Congestion Control 11

AIMD
(Additive Increase / Multiplicative

Decrease)
• CongestionWindow (cwnd) is a variable held by

the TCP source for each connection.

• cwnd is set based on the perceived level of

congestion. The Host receives implicit (packet

drop) or explicit (packet mark) indications of

internal congestion.

MaxWindow :: min (CongestionWindow , AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked)

Advanced Computer Networks: TCP Congestion Control 12

Additive Increase (AI)

• Additive Increase is a reaction to perceived available

capacity (referred to as congestion avoidance stage).

• Frequently in the literature, additive increase is defined

by parameter α (where the default is α = 1).

• Linear Increase :: For each “cwnd’s worth” of packets

sent, increase cwnd by 1 packet.

• In practice, cwnd is incremented fractionally for each

arriving ACK.

increment = MSS x (MSS /cwnd)

cwnd = cwnd + increment

Advanced Computer Networks: TCP Congestion Control 13

Figure 6.8 Additive Increase

Source Destination

Add one packet

each RTT

Advanced Computer Networks: TCP Congestion Control 14

Multiplicative Decrease (MD)
* Key assumption :: a dropped packet and resultant

timeout are due to congestion at a router.

• Frequently in the literature, multiplicative decrease
is defined by parameter β (where the default is β =
0.5)

Multiplicate Decrease:: TCP reacts to a timeout by
halving cwnd.

• Although defined in bytes, the literature often
discusses cwnd in terms of packets (or more
formally in MSS == Maximum Segment Size).

• cwnd is not allowed below the size of a single
packet.

Advanced Computer Networks: TCP Congestion Control 15

AIMD
(Additive Increase / Multiplicative

Decrease)
• It has been shown that AIMD is a necessary

condition for TCP congestion control to be stable.

• Because the simple CC mechanism involves

timeouts that cause retransmissions, it is important

that hosts have an accurate timeout mechanism.

• Timeouts set as a function of average RTT and

standard deviation of RTT.

• However, TCP hosts only sample round-trip time

once per RTT using coarse-grained clock.

Advanced Computer Networks: TCP Congestion Control 16

Figure 6.9 Typical TCP
Sawtooth Pattern

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

70

30

40

50

10

10.0

Advanced Computer Networks: TCP Congestion Control 17

Slow Start

• Linear additive increase takes too long to
ramp up a new TCP connection from cold
start.

• Beginning with TCP Tahoe, the slow start
mechanism was added to provide an initial
exponential increase in the size of cwnd.

Remember mechanism by: slow start
prevents a slow start. Moreover, slow start
is slower than sending a full advertised
window’s worth of packets all at once.

Advanced Computer Networks: TCP Congestion Control 18

Slow Start

• The source starts with cwnd = 1.

• Every time an ACK arrives, cwnd is

incremented.

cwnd is effectively doubled per RTT “epoch”.

• Two slow start situations:

 At the very beginning of a connection {cold start}.

 When the connection goes dead waiting for a

timeout to occur (i.e, when the advertized

window goes to zero!)

Advanced Computer Networks: TCP Congestion Control 19

Figure 6.10 Slow Start

Source Destination

Slow Start

Add one packet

per ACK

Advanced Computer Networks: TCP Congestion Control 20

Slow Start

• However, in the second case the source

has more information. The current value

of cwnd can be saved as a congestion

threshold.

• This is also known as the “slow start

threshold” ssthresh.

ssthresh

Advanced Computer Networks: TCP Congestion Control 21

Advanced Computer Networks: TCP Congestion Control 22

Figure 6.11 Behavior of TCP
Congestion Control

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Time (seconds)

70

30

40

50

10

Advanced Computer Networks: TCP Congestion Control 23

Fast Retransmit

• Coarse timeouts remained a problem, and Fast
retransmit was added with TCP Tahoe.

• Since the receiver responds every time a packet
arrives, this implies the sender will see duplicate
ACKs.

Basic Idea:: use duplicate ACKs to signal lost packet.

Fast Retransmit

Upon receipt of three duplicate ACKs, the TCP Sender

retransmits the lost packet.

Advanced Computer Networks: TCP Congestion Control 24

Fast Retransmit

• Generally, fast retransmit eliminates about half

the coarse-grain timeouts.

• This yields roughly a 20% improvement in

throughput.

• Note – fast retransmit does not eliminate all

the timeouts due to small window sizes at the

source.

Advanced Computer Networks: TCP Congestion Control 25

Figure 6.12 Fast Retransmit

Packet 1

Packet 2

Packet 3

Packet 4

Packet 5

Packet 6

Retransmit

packet 3

ACK 1

ACK 2

ACK 2

ACK 2

ACK 6

ACK 2

Sender Receiv er

Fast Retransmit

Based on three

duplicate ACKs

Advanced Computer Networks: TCP Congestion Control 26

Figure 6.13 TCP Fast Retransmit
Trace

60

20

1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time (seconds)

70

30

40

50

10

Advanced Computer Networks: TCP Congestion Control 27

Fast Recovery
• Fast recovery was added with TCP Reno.

• Basic idea:: When fast retransmit detects
three duplicate ACKs, start the recovery
process from congestion avoidance region
and use ACKs in the pipe to pace the
sending of packets.

Fast Recovery

After Fast Retransmit, half cwnd and commence

recovery from this point using linear additive increase

‘primed’ by left over ACKs in pipe.

Advanced Computer Networks: TCP Congestion Control 28

Modified Slow Start

• With fast recovery, slow start only
occurs:

–At cold start

–After a coarse-grain timeout

• This is the difference between
TCP Tahoe and TCP Reno!!

Many TCP ‘flavors’
• TCP New Reno

• TCP SACK

– requires sender and receiver both to support TCP

SACK We will come back to this topic.

– possible state machine is complex.

• TCP Vegas

– adjusts window size based on difference between

expected and actual RTT.

• TCP BIC TCP Cubic

• TCP Compound

Advanced Computer Networks: TCP Congestion Control 29

We will come back

to this topic later!!

TCP New Reno

• Two problem scenarios with TCP Reno

– bursty losses, Reno cannot recover from

bursts of 3+ losses

– Packets arriving out-of-order can yield

duplicate acks when in fact there is no

loss.

• New Reno solution – try to determine

the end of a burst loss.

Advanced Computer Networks: TCP Congestion Control 30

TCP New Reno

• When duplicate ACKs trigger a

retransmission for a lost packet,

remember the highest packet sent from

window in recover.

• Upon receiving an ACK,

– if ACK < recover => partial ACK

– If ACK ≥ recover => new ACK

Advanced Computer Networks: TCP Congestion Control 31

TCP New Reno

• Partial ACK implies another lost packet:

retransmit next packet, inflate window

and stay in fast recovery.

• New ACK implies fast recovery is over:

starting from 0.5 x cwnd proceed with

congestion avoidance (linear increase).

• New Reno recovers from n losses in n

round trips.

Advanced Computer Networks: TCP Congestion Control 32

Figure 5.6 Three-way TCP
Handshake

Advanced Computer Networks: TCP Congestion Control 33

Advanced Computer Networks: TCP Congestion Control 34

Adaptive Retransmissions

RTT:: Round Trip Time between a pair of

hosts on the Internet.

• How to set the TimeOut value (RTO)?

– The timeout value is set as a function of

the expected RTT.

– Consequences of a bad choice?

Advanced Computer Networks: TCP Congestion Control 35

Original Algorithm

• Keep a running average of RTT and

compute TimeOut as a function of this

RTT.

– Send packet and keep timestamp ts .

– When ACK arrives, record timestamp ta .

SampleRTT = ta - ts

Advanced Computer Networks: TCP Congestion Control 36

Original Algorithm

Compute a weighted average:

EstimatedRTT = α x EstimatedRTT +
(1- α) x SampleRTT

Original TCP spec: α in range (0.8,0.9)

TimeOut = 2 x EstimatedRTT

Advanced Computer Networks: TCP Congestion Control 37

Karn/Partidge Algorithm

An obvious flaw in the original algorithm:

Whenever there is a retransmission it is

impossible to know whether to associate

the ACK with the original packet or the

retransmitted packet.

Advanced Computer Networks: TCP Congestion Control 38

Figure 5.10 Associating the
ACK?

Sender Receiv er

Original transmission

ACK

Retransmission

Sender Receiv er

Original transmission

ACK

Retransmission

(a) (b)

Advanced Computer Networks: TCP Congestion Control 39

Karn/Partidge Algorithm

1. Do not measure SampleRTT when

sending packet more than once.

2. For each retransmission, set TimeOut

to double the last TimeOut.

{ Note – this is a form of exponential

backoff based on the believe that the

lost packet is due to congestion.}

Advanced Computer Networks: TCP Congestion Control 40

Jacobson/Karels Algorithm
The problem with the original algorithm is that it did not

take into account the variance of SampleRTT.

Difference = SampleRTT – EstimatedRTT

EstimatedRTT = EstimatedRTT +

(δ x Difference)

Deviation = δ (|Difference| - Deviation)

where δ is a fraction between 0 and 1.

Advanced Computer Networks: TCP Congestion Control 41

Jacobson/Karels Algorithm
TCP computes timeout using both the mean

and variance of RTT

TimeOut = µ x EstimatedRTT

+ Φ x Deviation

where based on experience µ = 1 and Φ = 4.

TCP Congestion Control
Summary

• Congestion occurs due to a variety of

circumstance.

• TCP interacts with routers in the subnet

and reacts to implicit congestion

notification (packet drop) by reducing the

TCP sender’s congestion window (MD).

• TCP increases congestion window using

slow start or congestion avoidance (AI).

Advanced Computer Networks: TCP Congestion Control 42

TCP Congestion Control
Summary

• Important TCP Congestion Control ideas

include: AIMD, Slow Start, Fast

Retransmit and Fast Recovery.

• Currently, the two most common versions

of TCP are Compound (Windows) and

Cubic (Linux).

• TCP needs rules and an algorithm to

determine RIO and RTO.

Advanced Computer Networks: TCP Congestion Control 43

