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WPI Introduction 

• TCP grows cwnd too slowly for large 
bandwidth connections 

• New TCP Variant needed 
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WPI CUBIC 

• BIC was first attempt 

• CUBIC simplified and improved upon BIC 

• Grow cwnd slower around loss events 
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WPI CUBIC Basics 

• cwnd growth 

 

• Packet loss 
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C CUBIC parameter 

t Elapsed time from the last window reduction 

K Time period to increase W to Wmax 

W Current cwnd 

Wmax cwnd at last window reduction 

β Window decrease constant 



WPI 

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

CUBIC Basics 

12/10/2013 6 

Wmax 

W(t=0) 

• At loss event set Wmax, reduce cwnd by β 
and calculate K 

 



WPI CUBIC Basics 
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WPI CUBIC in Linux 

• Not implemented as in the CUBIC paper 

• cwnd grows in increments of segment sizes 

• Custom method for calculating cube roots 

• Checks for error conditions 

• Unit scaling 
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WPI Growing cwnd 

• Linux only grows cwnd 
by full segments 

• CUBIC can grow cwnd 
less than full segment 

• Same impact by 
increasing amount of 
time between updates 
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WPI Scaling in CUBIC 

• Most scaling is related to time 

• Variable ‘t’ measured with TCP timestamps 

– Timestamps use clock cycles to increment 

– Units are called jiffies in the Linux Kernel 

• Number of milliseconds in a jiffy depends on 
the CPU’s clock 

• Scaling required to get time units correct 
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WPI ns-3 Implementation 

• Object oriented design 

• Generic TCP defined 

• TCP variants are 
extended from base 

• TCP headers and buffers 
provided 

• Added TcpCubic object 

– tcp-cubic.cc 

– tcp-cubic.h 
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WPI ns-3 Methods 

• NewAck – called for every new ACK received 

– Normal cwnd updates in slow start 

– CUBIC updates otherwise 

• DupAck – called for every duplicate ACK 
received 

– Normal operation when < 3 duplicates 

– For 3 duplicate ACKs reduce cwnd 
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WPI CUBIC Methods 

• CubicRoot – Find the cubic root of a number 

– Based on Linux Kernel implementation 

• CubicUpdate – Calculate the cwnd target for 
CUBIC 

• CubicTcpFriendliness – Change the cwnd 
target for TCP Friendliness 

• CubicReset – Reset CUBIC parameters 
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WPI CUBIC Flow 
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WPI Issues 

• ns-3 does not have TCP timestamps 

• Simulation clock used instead 

• Requires adjustments to calculating ‘t’ due to 
different units 

• Could remove the use of jiffy code but much 
of the Linux implementation relies on scaling 
factors based on the system clock 
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WPI Results 

• Compare to real world CUBIC example 

• Examine simulation results 

– Verify cwnd reduction 

– Verify cwnd growth in relation to Wmax 

• Compare simulated CUBIC to simulated 
NewReno 
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WPI Simulation Scenario 

• Simple sender and sink 
topology 

• Packet sizes 536 bytes 

• Transmission rate 
1Mbps 

• Delay 40ms 

• Error rate – Causes lost 
packets at the receiver 
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WPI Measurements 
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• Measurement and simulation have similar 
CUBIC curve 

• Number of segments similar 



WPI Packet Loss 

• Before loss cwnd = 216 

• After loss cwnd = 172 

• β = 819 

• BICTCP_BETA_SCALE = 1024 
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WPI CUBIC Growth 
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• Before and after additional scaling of ‘t’ 
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WPI NewReno Comparison 

• Same simulation run 
with CUBIC and 
NewReno 

• Both increment the 
same under slow start 

• CUBIC grows cwnd 
faster 

• CUBIC handles packet 
loss better than 
NewReno 
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WPI Conclusions 

• Created a CUBIC implementation in ns-3 

• Similar cwnd growth to actual CUBIC 
measurements 

• Current version outperforms NewReno 

• Scaling adjustments required 
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WPI Questions 
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