
WPI 

TCP CUBIC in ns-3 

CS577 

Brett Levasseur 

12/10/2013 



WPI Outline 

• Introduction 

• CUBIC 

• CUBIC in Linux 

• ns-3 Implementation 

• Results 

• Conclusions 

12/10/2013 2 



WPI Introduction 

• TCP grows cwnd too slowly for large 
bandwidth connections 

• New TCP Variant needed 

12/10/2013 3 

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

B
yt

e
s 

Hours 

10Gbps 

cwnd

1,250 byte packets 
ssthresh ~ 8000 bytes 
100ms RTT 

Almost 1.4 hours to take 
up ½ possible cwnd 



WPI CUBIC 

• BIC was first attempt 

• CUBIC simplified and improved upon BIC 

• Grow cwnd slower around loss events 

12/10/2013 4 



WPI CUBIC Basics 

• cwnd growth 

 

• Packet loss 

 

12/10/2013 5 

C CUBIC parameter 

t Elapsed time from the last window reduction 

K Time period to increase W to Wmax 

W Current cwnd 

Wmax cwnd at last window reduction 

β Window decrease constant 



WPI 

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

CUBIC Basics 

12/10/2013 6 

Wmax 

W(t=0) 

• At loss event set Wmax, reduce cwnd by β 
and calculate K 

 



WPI CUBIC Basics 

12/10/2013 7 

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14

K 

W(t=1) 

W(t=2) 

• cwnd grows back to K when t = K 
 

W(t=K) 



WPI CUBIC in Linux 

• Not implemented as in the CUBIC paper 

• cwnd grows in increments of segment sizes 

• Custom method for calculating cube roots 

• Checks for error conditions 

• Unit scaling 

12/10/2013 8 



WPI Growing cwnd 

• Linux only grows cwnd 
by full segments 

• CUBIC can grow cwnd 
less than full segment 

• Same impact by 
increasing amount of 
time between updates 

12/10/2013 9 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5

0 0 

1 0.25 

2 0.5 

3 0.75 

4 1 

0 0 

4 1 



WPI Scaling in CUBIC 

• Most scaling is related to time 

• Variable ‘t’ measured with TCP timestamps 

– Timestamps use clock cycles to increment 

– Units are called jiffies in the Linux Kernel 

• Number of milliseconds in a jiffy depends on 
the CPU’s clock 

• Scaling required to get time units correct 

12/10/2013 10 



WPI ns-3 Implementation 

• Object oriented design 

• Generic TCP defined 

• TCP variants are 
extended from base 

• TCP headers and buffers 
provided 

• Added TcpCubic object 

– tcp-cubic.cc 

– tcp-cubic.h 

 
12/10/2013 11 



WPI ns-3 Methods 

• NewAck – called for every new ACK received 

– Normal cwnd updates in slow start 

– CUBIC updates otherwise 

• DupAck – called for every duplicate ACK 
received 

– Normal operation when < 3 duplicates 

– For 3 duplicate ACKs reduce cwnd 

 

12/10/2013 12 



WPI CUBIC Methods 

• CubicRoot – Find the cubic root of a number 

– Based on Linux Kernel implementation 

• CubicUpdate – Calculate the cwnd target for 
CUBIC 

• CubicTcpFriendliness – Change the cwnd 
target for TCP Friendliness 

• CubicReset – Reset CUBIC parameters 

 

12/10/2013 13 



WPI CUBIC Flow 

12/10/2013 14 

NewAck CubicRoot CubicUpdate 
CubicTcp 

Friendliness 

If outside slow start 
Set K for loss event 

Check TCP 
Friendliness 

Recommended 
cwnd growth 



WPI Issues 

• ns-3 does not have TCP timestamps 

• Simulation clock used instead 

• Requires adjustments to calculating ‘t’ due to 
different units 

• Could remove the use of jiffy code but much 
of the Linux implementation relies on scaling 
factors based on the system clock 

12/10/2013 15 



WPI Results 

• Compare to real world CUBIC example 

• Examine simulation results 

– Verify cwnd reduction 

– Verify cwnd growth in relation to Wmax 

• Compare simulated CUBIC to simulated 
NewReno 

12/10/2013 16 



WPI Simulation Scenario 

• Simple sender and sink 
topology 

• Packet sizes 536 bytes 

• Transmission rate 
1Mbps 

• Delay 40ms 

• Error rate – Causes lost 
packets at the receiver 

12/10/2013 17 



WPI Measurements 

12/10/2013 18 

• Measurement and simulation have similar 
CUBIC curve 

• Number of segments similar 



WPI Packet Loss 

• Before loss cwnd = 216 

• After loss cwnd = 172 

• β = 819 

• BICTCP_BETA_SCALE = 1024 

12/10/2013 19 



WPI CUBIC Growth 

12/10/2013 20 

• Before and after additional scaling of ‘t’ 

• More work is needed for using simulator clock 
with ‘t’ 

concave 

concave & 
convex 

convex 



WPI NewReno Comparison 

• Same simulation run 
with CUBIC and 
NewReno 

• Both increment the 
same under slow start 

• CUBIC grows cwnd 
faster 

• CUBIC handles packet 
loss better than 
NewReno 

12/10/2013 21 



WPI Conclusions 

• Created a CUBIC implementation in ns-3 

• Similar cwnd growth to actual CUBIC 
measurements 

• Current version outperforms NewReno 

• Scaling adjustments required 

12/10/2013 22 



WPI Questions 

12/10/2013 23 


