
WPI

TCP Westwood(+) Protocol
Implementation in ns-3

Authors: Siddharth Fangadhar, Truc Anh N.
Nguyenm Greeshma Umapathi, and James P.G.

Sterbenz
CS577

Brett Levasseur

10/1/2013 1

WPI Outline

• Introduction

• TCP Variations

• ns-3 TCP Implementation

• ns-3 Westwood Implementation

• Evaluation

• Conclusions

• Remarks

• Questions

10/1/2013 2

WPI Introduction

• ns-3 is a packet network simulator

– Successor to ns-2

– Improved design, better wireless support

– Used by researchers around the world

– Has TCP implementation

– Lacks modern TCP variants

– Tahoe, Reno, NewReno

• Authors present Westwood(+) for ns-3

10/1/2013 3

WPI TCP Tahoe

• Terms
– cwnd: Congestion Window

– ssthresh: Slow Start Threshold

• TCP States
– Slow-start: cwnd exponential increase

– Congestion Avoidance: cwnd linear increase

– Fast Retransmit: Half ssthresh, reset cwnd to 1

• Timeouts and duplicate ACKs (DUPACK)
considered congestion

10/1/2013 4

WPI TCP Tahoe

10/1/2013 5

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

cw
n

d
 s

iz
e

RTT

Slow start

Congestion avoidance

ssthresh

Timeout or 3 DUPACK

WPI TCP Reno

• Tahoe vs Reno

– Tahoe: 3 DUPACKs move to fast retransmit

– Reno: 3 DUPACKs half ssthresh and cwnd, move to
fast recovery

• Fast Recovery

– Retransmit missing packet

– Wait for ACK before congestion avoidance

10/1/2013 6

WPI

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cw
n

d
 s

iz
e

RTT

TCP Reno

10/1/2013 7

Slow start

Congestion avoidance

ssthresh

Timeout or 3 DUPACK

WPI TCP NewReno

• Adds partial and full ACKs

– Partial ACK remain in fast recovery

– Full ACK continues congestion avoidance

10/1/2013 8

Transmission Window

1 2 3 4 5 6 7 8 9

Partial ACK = 4, 6, 8
Full ACK = 9

WPI TCP Packet Corruption

• Lost packets considered
congestion

• Wireless has bursty errors

• High wireless bit error rate
confused as congestion

• TCP lowers cwnd needlessly

10/1/2013 9

Wireless loss

WPI TCP Westwood

• Made for wireless networks

• Estimates bandwidth

– Set cwnd based on estimate

– Set ssthresh based on estimate

– Rate of ACK and DUPACK arrivals used

10/1/2013 10

BWE ˆb

BWA b

Weight a = 0.9

Time k

WPI TCP Westwood+

• ACK compression hurts Westwood estimation

• Westwood+ compensates

– Samples every RTT instead of every ACK

10/1/2013 11

ACK ACK

Data

Data

Data

ACK

ACK

ACK ACK

Flow 1

Flow 2

WPI TCP in ns-3

• Object oriented design

• Generic TCP defined

• TCP variants are
extended from base

• TCP headers and buffers
provided

10/1/2013 12

Contribution

WPI Global Variables

10/1/2013 13

m_cWnd Congestion window

m_ssThresh Slow start threshold

m_initialCWnd Initial value of m_cWnd

m_inFastRec Fast recovery flag

m_prevAckNo Last received ACK

m_accountedFor Track number of DUPACKs during loss

m_lastAck Arrival time of previous ACK

m_currentBW Current bandwidth estimate

m_minRTT Minimum round trip time

m_lastBW Last bandwidth estimate

m_lastSampleBW Total measured bandwidth

m_ackedSegments Total ACKed segments for current RTT

m_IsCount Flag to count for m_ackedSegments

m_bwEstimateEvent Bandwidth sampling event

WPI Execution

• ACK arrives at sender

• ACKs counted

• Bandwidth is estimated

– Immediate in Westwood

– After RTT timeout in +

• Optional use of Tustin
filter (user choice)

– Off: Measured BW

– On: Estimate BW

10/1/2013 14

WPI Count ACK

• Need total number of bytes sent

– Count TCP segments received

– cumul_ack = Current ACK number – m_prevAckNo

10/1/2013 15

ACK = 10
m_prevAckNo = 6
cumul_ack = 10 - 6
4 Packets received

WPI Count ACK

• Take DUPACKs into account

– If cumul_ack = 0 then current ACK is a duplicate

– Else check m_accountedFor for number of
DUPACKs

10/1/2013 16

ACK = 6
m_prevAckNo = 6
cumul_ack = 6 - 6

DUPACK

ACK = 9

m_prevAckNo = 6
cumul_ack = 9 - 6

m_accountedFor = 1
ACKed 3 > 1 DUPACK

3 – 1 = 2 received

ACK = 7

m_prevAckNo = 6
cumul_ack = 7 - 6

m_accountedFor = 2
ACKed 1 < 2 DUPACK

cumul_ack = 1

WPI Estimate Bandwidth

• Westwood

• Westwood+

10/1/2013 17

Bytes since last ACK

Time since last ACK

Last known RTT

WPI Tustin Filtering

• Off – Measure bandwidth assumed current

• On – Estimate current bandwidth

10/1/2013 18
w1 w2

WPI Tustin Filtering

10/1/2013 19

w1 w2

(alpha * m_lastBW) + ((1 - alpha) * ((sample_bwe + m_lastSampleBW) / 2));

w1 w2

From ns-3 source code (version 3.18):

• Source code and Westwood equation use addition
• Equation 4 uses multiplication so probably a typo

?

WPI Westwood Cont

• For new ACK adjust variables same as Reno

• After receiving set number of DUPACKs

– Adjust slow start threshold

• If retransmit timeout

– Adjust slow start threshold the same as previous

– Cwnd set to one TCP segment size

10/1/2013 20

If m_cWnd > m_ssThresh Then m_cWnd = m_ssThresh

WPI Westwood Evaluation

• Simulate original TCP Westwood study

10/1/2013 21

Wireless Link

WPI Packet Error Rate

10/1/2013 22

• Westwood samples bandwidth
on every ACK

• Westwood+ samples every RTT
• Westwood+ takes longer to

stabilize
• As error rate increases

Westwood+ performs worse

WPI Packet Error Rate

10/1/2013 23

ns-3 Simulation

Westwood Paper

Authors claim this is validation of their work

WPI Bottleneck Delay

10/1/2013 24

• PER = 0.005
• Westwood(+) attempt to fill the

pipe
• Other variants conservative

WPI Bottleneck Delay

10/1/2013 25

ns-3 Simulation
Westwood Paper

TCP Reno appears to behave differently in ns-3 vs ns-2

WPI Bottleneck Bandwidth

10/1/2013 26

• PER = 0.005
• Delay = 0.01ms
• Westwood(+) attempt to fill the

pipe
• Other variants conservative

WPI Bottleneck Bandwidth

10/1/2013 27

ns-3 Simulation
Westwood Paper

WPI Delayed ACK

10/1/2013 28

Delayed ACK Timeout = 200ms

WPI MTU Size

10/1/2013 29

WPI Cwnd Size

10/1/2013 30

• PER = 0.005
• Samples every 3sec

WPI Westwood+ Evaluation

• Simulation designed to create ACK
compression

10/1/2013 31

WPI ACK Compression

10/1/2013 32

Westwood overestimates bandwidth

WPI Conclusions

• Created Westwood(+) for ns-3

• Validated similar to original Westwood work

• Westwood+ better when ACK compression
present

• Working on TCP SACK and Vegas
implementations

10/1/2013 33

WPI Remarks

• Inconsistency in Reno implementation

• Tests did not emphasize Westwood+ strengths

• Comparison to original Westwood work is not
as conclusive as author’s suggest

• Typo in the Westwood equation

10/1/2013 34

WPI Questions

10/1/2013 35

WPI References

• S. Gangadhar, T. Nguyen, G. Umapathi, and J. Sterbenz. TCP
Westwood(+) protocol implementation in ns-3. In ICST 2013,
pages 167-175.

• S. Mascolo, C. Casetti, M. Gerla, M. Sanadidi, and R. Wang.
TCP westwood: Bandwidth estimation for enhanced transport
over wireless links. In MOBICOM 2001, pages 287–297.

10/1/2013 36

