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Motivation

» Distributed Cloud Based Services are becoming
more prevalent

- PaaS vendors want to charge for cloud services

- In a traffic base pricing model, how do you meter
traffic in a distributed system?
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Bad Example, 100 Mps for 2 Nodes

50 Mbps Local Limiter Nodel
50 Mbps Local Limiter Node2
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Bad Example, 100 Mps for 2 Nodes

50 Mbps Local Limiter Nodel

- 50 Mbps ' ‘
80 Mbps

Limiter Reduces
Traffic to 50 Mbps

50 Mbps Local Limiter Node2
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Bad Example, 100 Mps for 2 Nodes
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Bad Example, 100 Mps for 2 Nodes

50 Mbps Local Limiter Nodel

- 50 Mbps '
80 Mbps

Paying for 100 Mbps,
have 100 Mbps traffic,
only getting 70 Mbps! 50 Mbps Local Limiter Node2

20 Mbps
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A Better Approach: Distributed
Rate Limiter

100 Mbps Shared Limiter Nodel
80 Mbps I I 80 Mbps l
100 Mbps Shared Limiter Node?2

20 Mbps ’ I 20 Mbps ’ ‘
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A Better Approach: Distributed
Rate Limiter

100 Mbps Shared Limiter Nodel
80 Mbps I 80 Mbps |

Limiters communicate /

to determine global limit —, o Mbps Shared Limiter Node2

20 Mbps I 20 Mbps ’ ‘
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Design of Distributed Rate Limiting

 When global limit is exceeded, packets are
dropped

« Limiters estimate incoming traffic and
communicate results to other limiters

« Communication between limiters is performed
using the Gossip Protocol over UDP
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Token Bucket

- Token Buckets are a well known mechanism used
to rate limit in networking applications

- Tokens are generated at a rate R
« Packets are traded for a token

« Can handle bursts up to the number of tokens in
the bucket

« Bursts drain bucket and subsequent traffic is
limited until new tokens are generated
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Token Bucket (cont.)

Rate R

Maximum number B

ol tokens
Token

Packets to be sent Conformity check

e~

» Compliant packet

Wehrle, Linux Networking Architecture. Prentice Hall, 2004 : :
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Use of Token Bucket

« Authors compare results to Centralized Token

Bucket where a single bucket is used to distribute
all of the traffic

— Single bucket where all limiters must pull tokens from

* This scheme is not practical but serves as the
baseline for comparing the results
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Distributed Rate
Limiting Algorithms
Global Token Bucket
Global Random Drop
Flow Proportional Share
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Global Token Bucket (GTB)

« Simulate a global bucket
— Tokens are shared between limiters

— When a byte arrives it’s traded for a token in the global
bucket

— Each limiter maintains an estimate of the global bucket

— Limiters broadcast their arrivals to the other limiters
which reduces global count

— 'Estimate Interval’ defines how frequently updates are
sent

- % Miscounting tokens from stale observations
impacts effectiveness
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Global Random Drop (GRD)

 RED-like probabilistic dropping scheme

- Instead of counting tokens, estimate a global
drop probability

« Apply drops locally based on percentage of traffic
received

- Aggregate drop rate should be near the global
drop rate
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Flow Proportional Share (FPS)

« Optimized for TCP flows (assumes TCP congestion
control)

* Tries to ensure fairness between flows
- Each limiter has a local bucket, no global bucket

- Token generation rate is proportional to the
number of flows at that limiter
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Flow Proportional Share

 Flows are classified as either bottlenecked or
unbottlenecked
— bottlenecked flows use less than the local rate limit

— unbottlenecked flows use more than the local rate limit
(or equal)

— Flows are unbottlenecked if the limiter is preventing them
from passing more traffic

- Idea here is to give weight to the unbottlenecked
flows because they are the ones fighting for traffic
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FPS - Bottlenecks

70 Mbps Limiter Nodel

30 Mbps Limiter Node2

Flow 3
Flow 4

* Not to scale Worcester Polytechnic Institute

Flow 1

Flow 2




FPS - Bottlenecks

70 Mbps Limiter Nodel

30 Mbps Limiter Node2

Flow 1 Unbottlenecked

Flow 2 Bottlenecked

Flow 3
Bottlenecked

Flow 4 Bottlenecked
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FPS Weight Calculation
Local Arrival Rate = Local Limit

 Make a fixed size set of all unbottlenecked flows
— Not all flows to avoid scaling issues with per flow state

« Pick the largest flow, then divide that by the local
rate to find the weight

- Ideal weight = local limit / max flow rate

 local limit = (ideal weight * limit) / (remote
weights + ideal weight)
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max flow rate

FPS — Bottlenec local limit

90 Mbps 70 Mbps Limiter Nodel

Flow 1 Unbottlenecked

Flow 2 Bottlenecked

30 Mbps Limiter Node2

Flow 3
Bottlenecked

Flow 4 Bottlenecked
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FPS Weight Calculation
Local Arrival Rate < Local Limit

« Calculate the local flow rate

- Ideal weight is calculated proportional to the
other flow weights:

— ideal = (local flow rate * sum of all remote weights not
including this rate) / (local limit - local demand)

« Idea is to reduce the local limit to match the
arrival rate
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Pseudo-code

FPS-ESTIMATE()
1 for each flow f in sample set
2 ESTIMATE(f)
3 localdemand + r;
4 if localdemand > locallimit then
5 maxflowrate «— MAXRATE(sample set)
6 idealweight « locallimit / maxflowrate
7 else

TL
8 remoteweights +— ? W

T T

9 idealweight «— ocidemand remotevcighs
10 locallimit + rernmledwe:i;:ffij::ﬁieigm
11 PROPAGATE(idealweight)
FPS-HANDLE-PACKET( P: Packet)
1 if RAND() < resampleprob then
2 add FLow(P) to sample set
3 TOKEN-BUCKET-LIMIT(P)

Figure 2: Pseudocode for FPS. w; corresponds to the weight
at each limiter i that represents the normalized flow count (as

opposed to rates r; as in GRD).
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Use of EWMA

« Estimated Weighted Moving Averages (EWMA) are
used to smooth out estimated arrival rates

« Also used in Flow Proportional Share to reduce
oscillations between two states
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Evaluation

Comparison to Centralized Token Bucket
Fairness to Centralized Token Bucket

Simulations with Departing and Arriving
Flows

Simulations with Mixed Length Flows
Fairness of Long vs Short Flows
Fairness of Bottlenecked Flows in FPS
Fairness With Respect to RTT
PlanetLab 1/N vs FPS experiments
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Setup

Limiters run on Linux

ModelNet is used as the network simulator
Kernel version 2.6.9

TCP NewReno with SACK
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Comparison to Centralized Token
Bucket

10 Mbps global limit
50 ms estimation interval, 20 second run
3 TCP flows to limiter 1, 7 TCP flows to limiter 2
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Figure 3: Time series of forwarding rate for a centralized limiter and our three limiting algorithms in the baseline experiment—3
TCP flows traverse limiter 1 and 7 TCP flows traverse limiter 2.
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Arrival Rate Patterns

« Shows how susceptible the algorithm is to
bursting

 GTB and GRD are less like our mark (CTB)
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Figure 4: Delivered forwarding rate for the aggregate at different time scales—each row represents one run of the baseline experi-
ment across two limiters with the “instantaneous” forwarding rate computed over the stated time period.
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Fairness Compared to CTB

* Above the diagonal
is more fair than
Central Token
Bucket, below the
line is less fair

« GRD and FPS are
more fair than CTB
In most cases
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Figure 5: Quantile-quantile plots of a single token bucket vs.
distributed limiter implementations. For each point (z,y),z
represents a quantile value for fairness with a single token
bucket and y represents the same quantile value for fairness
for the limiter algorithm.
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Departing and Arriving Flows

- Every 10 seconds, add a new flow up to 5 flows
- After 50 seconds, start removing flows
* Notice the reference algorithm CTB is not very fair
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Mixed Length Flows

* 10 long lived TCP flows through one limiter

- Short lived flows with Poisson distribution through
another

Measuring fairness between different types of
flows

GRD is the most fair followed by FPS and the CTB
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Table 1; Fairness of Long vs Short
Flows

CTB GRD FPS

Goodput (bulk mean) [ 6900.90 | 7257.87 | 6989.76
(stddev) | 125.45 75.87 219.55

Goodput (web mean) | 1796.06 | 1974.35 | 2090.25
(stddev) | 104.32 93.90 57.98

Web rate (h-mean) [0,5000) | 28.17 25.84 2571
[5000, 50000) | 276.18 | 34296 | 335.80
[50000, 500000) | 47209 | 612.08 | 57140
[500000, cc) | 69540 | 751.98 | 765.26

Fairness (bulk mean) | 0.971 0.997 0.962

Table 1: Goodput and delivered rates (Kbps), and fairness for
bulk flows over 10 runs of the Web flow experiment. We use
mean values for goodput across experiments and use the har-
monic mean of rates (Kbps) delivered to Web flows of size (in
bytes) within the specified ranges.
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Changes in Bottlenecked Flows for
FPS

2 limiters, 3 flows to limiter 1, 7 flows to limiter 2
10 Mbps global limit

« At 15 seconds the 7 flows are restricted to 2 Mbps
by a bottleneck
— Should be 8 Mbps to limiter 1 and 2 Mbps to limiter 2

« At 31 seconds a new flow arrives at limiter 2

— Should split 8 Mbps between the 4 flows, plus 2 Mbps for
other 7 flows, so 4 Mbps at limiter 1 and 6 Mbps at limiter
2

Worcester Polytechnic Institute



Rate (Kbps)

38

Changes in Bottlenecked Flows for
FPS
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Figure 7: FPS rate limiting correctly adjusting to the arrival of bottlenecked flows.
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Changes in Bottlenecked Flows for
FPS

Not quite 4/6 split
Limiter 1 has too much

2 Mbps Limit New Flow
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Figure 7: FPS rate limiting correctly adjusting to the arrival of bottlenecked flows.
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Fairness With Respect to RTT

 Same as baseline experiment except changing

RTT times of flows
« FPS is most fair

CTB | GRD | FPS

Aggregate (Mbps) | 10.57 | 10.63 | 10.43
Short RTT (Mbps) | 1.41 135 | 0.92
(stddev) | 0.16 | 0.71 | 0.15

Long RTT (Mbps) | 0.10 | 0.16 | 0.57
(stddev) | 0.01 | 0.03 | 0.05

Table 2: Average throughput for 7 short (10-ms RTT) flows and
3 long (100 ms) RTT flows distributed across 2 limiters.
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Gossip Branching Factor

- Higher branch factor increases limiter

communication
* Notice fairness degradation at large numbers of
limiters
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(b) FPS delivered rate.

Figure 8: Fairness and delivered rate vs. number of limiters in the scaling experiment.
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PlanetLab test- 1/N vs FPS

10 PlanetLab servers serving web content

5 Mbps global limit

After 30 seconds 7 of the servers cut out

FPS re-allocates the load to the 3 servers

After another 30 seconds all servers come back
FPS re-allocates the load to all 10 servers

Worcester Polytechnic Institute



PlanetLab test- 1/N vs FPS
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Figure 9: A time-series graph rate limiting at 10 PlanetLab sites across North America. Each site is a Web server, fronted by a
rate limiter. Every 30 seconds total demand shifts to four servers and then back to all 10 nodes. The top line represents aggregate

throughput; other lines represent the served rates at each limiter.
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Conclusions

- Several algorithms trying to tackle distributed
rate limiting

« FPS performs well for TCP based flows, other
techniques suitable for mixed flows

* FPS can perform better than the reference
implementation CTB in several scenarios

« Overall interesting approach to DRL with a couple
of small quirks
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