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Motivation 

• Distributed Cloud Based Services are becoming 
more prevalent 

• PaaS vendors want to charge for cloud services 

• In a traffic base pricing model, how do you meter 
traffic in a distributed system? 
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Bad Example, 100 Mps for 2 Nodes 
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Bad Example, 100 Mps for 2 Nodes 
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Node1 50 Mbps Local Limiter 
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50 Mbps 
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Limiter Reduces  
Traffic to 50 Mbps 
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Bad Example, 100 Mps for 2 Nodes 
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Bad Example, 100 Mps for 2 Nodes 
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Node1 50 Mbps Local Limiter 

80 Mbps 
50 Mbps 

Node2 50 Mbps Local Limiter 

20 Mbps 20 Mbps 

Paying for 100 Mbps,  
have 100 Mbps traffic,  
only getting 70 Mbps! 
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A Better Approach: Distributed 
Rate Limiter 
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A Better Approach: Distributed 
Rate Limiter 
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100 Mbps Shared Limiter 

80 Mbps 

Limiters communicate  
to determine global limit 
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Design of Distributed Rate Limiting 

• When global limit is exceeded, packets are 
dropped 

• Limiters estimate incoming traffic and 
communicate results to other limiters 

• Communication between limiters is performed 
using the Gossip Protocol over UDP 
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Token Bucket 

• Token Buckets are a well known mechanism used 
to rate limit in networking applications 

• Tokens are generated at a rate R 

• Packets are traded for a token 

• Can handle bursts up to the number of tokens in 
the bucket 

• Bursts drain bucket and subsequent traffic is 
limited until new tokens are generated 
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Token Bucket (cont.) 

Wehrle, Linux Networking Architecture. Prentice Hall, 2004 
http://flylib.com/books/en/3.475.1.95/1/ 

13 



Worcester Polytechnic Institute 

Use of Token Bucket 

• Authors compare results to Centralized Token 
Bucket where a single bucket is used to distribute 
all of the traffic 

─ Single bucket where all limiters must pull tokens from 

• This scheme is not practical but serves as the 
baseline for comparing the results 
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Distributed Rate 
Limiting Algorithms 
• Global Token Bucket 

• Global Random Drop 

• Flow Proportional Share 
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Global Token Bucket (GTB) 

• Simulate a global bucket 

─ Tokens are shared between limiters 

─ When a byte arrives it’s traded for a token in the global 
bucket 

─ Each limiter maintains an estimate of the global bucket 

─ Limiters broadcast their arrivals to the other limiters 
which reduces global count 

─ ‘Estimate Interval’ defines how frequently updates are 
sent 

• ✖ Miscounting tokens from stale observations 
impacts effectiveness 
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Global Random Drop (GRD) 

• RED-like probabilistic dropping scheme 

• Instead of counting tokens, estimate a global 
drop probability  

• Apply drops locally based on percentage of traffic 
received 

• Aggregate drop rate should be near the global 
drop rate 
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Flow Proportional Share (FPS) 

• Optimized for TCP flows (assumes TCP congestion 
control) 

• Tries to ensure fairness between flows 

• Each limiter has a local bucket, no global bucket 

• Token generation rate is proportional to the 
number of flows at that limiter 
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Flow Proportional Share 

• Flows are classified as either bottlenecked or 
unbottlenecked 

─ bottlenecked flows use less than the local rate limit 

─ unbottlenecked flows use more than the local rate limit 
(or equal) 

─ Flows are unbottlenecked if the limiter is preventing them 
from passing more traffic 

• Idea here is to give weight to the unbottlenecked 
flows because they are the ones fighting for traffic 
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FPS – Bottlenecks 

* Not to scale 20 

Node1 70 Mbps Limiter 

Node2 30 Mbps Limiter 

Flow 1 

Flow 2 

Flow 3 

Flow 4 



Worcester Polytechnic Institute 

FPS – Bottlenecks 
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FPS Weight Calculation 
Local Arrival Rate ≥ Local Limit 

• Make a fixed size set of all unbottlenecked flows 

─ Not all flows to avoid scaling issues with per flow state 

• Pick the largest flow, then divide that by the local 
rate to find the weight 

 

• Ideal weight = local limit / max flow rate 

• local limit = (ideal weight * limit) / (remote 
weights + ideal weight) 

 

22 



Worcester Polytechnic Institute 

FPS – Bottlenecks 

* Not to scale 23 

Node1 70 Mbps Limiter 

Node2 30 Mbps Limiter 

Unbottlenecked 

Bottlenecked 

Bottlenecked 
Bottlenecked 

Flow 1 

Flow 2 

Flow 3 

Flow 4 

90 Mbps 

max flow rate 
local limit 
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FPS Weight Calculation 
Local Arrival Rate < Local Limit  

• Calculate the local flow rate 

• Ideal weight is calculated proportional to the 
other flow weights: 

─ ideal = (local flow rate * sum of all remote weights not 
including this rate) / (local limit – local demand) 

• Idea is to reduce the local limit to match the 
arrival rate 
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Pseudo-code 
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Use of EWMA 

• Estimated Weighted Moving Averages (EWMA) are 
used to smooth out estimated arrival rates 

• Also used in Flow Proportional Share to reduce 
oscillations between two states  
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Evaluation 

27 

• Comparison to Centralized Token Bucket 

• Fairness to Centralized Token Bucket 

• Simulations with Departing and Arriving 
Flows 

• Simulations with Mixed Length Flows 

• Fairness of Long vs Short Flows 

• Fairness of Bottlenecked Flows in FPS 

• Fairness With Respect to RTT 

• PlanetLab 1/N vs FPS experiments 
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Setup 

• Limiters run on Linux 

• ModelNet is used as the network simulator 

• Kernel version 2.6.9 

• TCP NewReno with SACK 
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Comparison to Centralized Token 
Bucket 

• 10 Mbps global limit 

• 50 ms estimation interval, 20 second run 

• 3 TCP flows to limiter 1, 7 TCP flows to limiter 2 
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Arrival Rate Patterns 
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• Shows how susceptible the algorithm is to 
bursting 

• GTB and GRD are less like our mark (CTB) 
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Fairness Compared to CTB 

• Above the diagonal 
is more fair than 
Central Token 
Bucket, below the 
line is less fair 

• GRD and FPS are 
more fair than CTB 
in most cases 
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Departing and Arriving Flows 

• Every 10 seconds, add a new flow up to 5 flows 

• After 50 seconds, start removing flows 

• Notice the reference algorithm CTB is not very fair 
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FPS is over 
the global 
limit here 

GRD is over 
the global 
limit here 
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Mixed Length Flows 

• 10 long lived TCP flows through one limiter 

• Short lived flows with Poisson distribution through 
another 

• Measuring fairness between different types of 
flows 

• GRD is the most fair followed by FPS and the CTB 
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Table 1; Fairness of Long vs Short 
Flows 
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Changes in Bottlenecked Flows for 
FPS 

• 2 limiters, 3 flows to limiter 1, 7 flows to limiter 2 

• 10 Mbps global limit 

• At 15 seconds the 7 flows are restricted to 2 Mbps 
by a bottleneck 

─  Should be 8 Mbps to limiter 1 and 2 Mbps to limiter 2 

• At 31 seconds a new flow arrives at limiter 2 

─ Should split 8 Mbps between the 4 flows, plus 2 Mbps for 
other 7 flows, so 4 Mbps at limiter 1 and 6 Mbps at limiter 
2 
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Changes in Bottlenecked Flows for 
FPS 
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2 Mbps Limit New Flow 
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Changes in Bottlenecked Flows for 
FPS 
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2 Mbps Limit New Flow 

Not quite 4/6 split 
Limiter 1 has too much 
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Fairness With Respect to RTT 

• Same as baseline experiment except changing 
RTT times of flows 

• FPS is most fair 

40 



Worcester Polytechnic Institute 

Gossip Branching Factor 

• Higher branch factor increases limiter 
communication 

• Notice fairness degradation at large numbers of 
limiters 

41 



Worcester Polytechnic Institute 

PlanetLab test- 1/N vs FPS 

• 10 PlanetLab servers serving web content 

• 5 Mbps global limit 

• After 30 seconds 7 of the servers cut out 

• FPS re-allocates the load to the 3 servers 

• After another 30 seconds all servers come back 

• FPS re-allocates the load to all 10 servers 
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PlanetLab test- 1/N vs FPS 
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Conclusions 

• Several algorithms trying to tackle distributed 
rate limiting 

• FPS performs well for TCP based flows, other 
techniques suitable for mixed flows 

• FPS can perform better than the reference 
implementation CTB in several scenarios 

• Overall interesting approach to DRL with a couple 
of small quirks 
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