The ContikiMAC Radio Duty Cycling Protocol

Adam Dunkels SICS Technical Report T2011:13

Presenter - Lingling Sun

Outline

- Introduction
- ContikiMAC Mechanism
- Implementation of ContikiMAC
- Evaluates of Energy Efficiency
- Conclusion

Introduction

- Contiki is an open source operating system for networked, memory-constrained systems with a particular focus on low-power wireless Internet of things devices. It was created by Adam Dunkels in 2002.
- Radio Duty Cycling (RDC) mechanism specifies a predetermined method for communication between sleeping nodes. It allows nodes to sleep and periodically wake-up to check the medium activity.

Introduction

- ContikiMAC is a suitable and energy efficient RDC mechanism for sensor networks running Contiki.
- Contiki Structure

Layer	Protocol
Application	IETF CoAP / REST Engine
Transport	UDP
Network	IPv6 / RPL
Adaptation	6LoWPAN
MAC	CSMA / link-layer bursts
Radio Duty Cycling	ContikiMAC
Physical	IEEE 802.15.4

Introduction

- ContikiMAC has a power-efficient wake-up mechanism which is achieved by precise timing through a set of timing constraints.
- ContikiMAC uses a fast sleep optimization to allow receivers to quickly detect falsepositive wake-ups.
- ContikiMAC uses a transmission phase-lock optimization to allow run-time optimization of the energy-efficiency of transmissions

ContikiMAC Mechanism

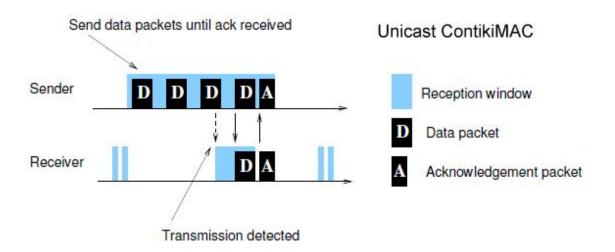


Figure 1: ContikiMAC: nodes sleep most of the time and periodically wake up to check for radio activity. If a packet transmission is detected, the receiver stays awake to receive the next packet and sends a link layer acknowledgment. To send a packet, the sender repeatedly sends the same packet until a link layer acknowledgment is received.

ContikiMAC Mechanism

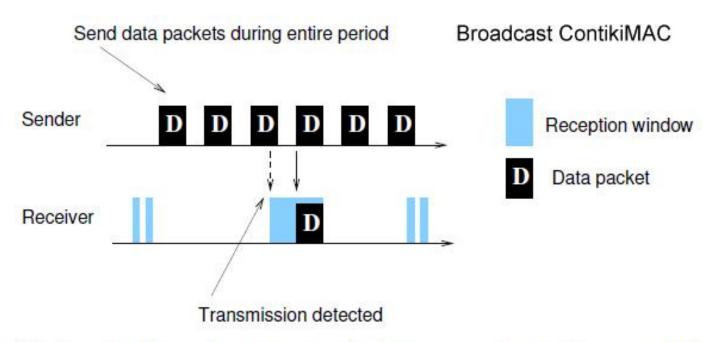


Figure 2: Broadcast transmissions are sent with repeated data packets for the full wake-up interval.

ContikiMAC Mechanism - Timing

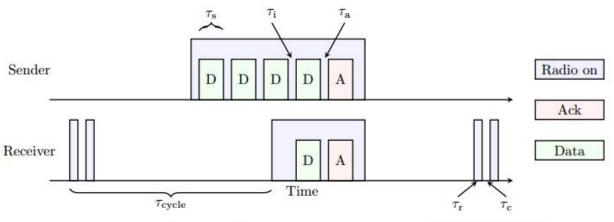


Figure 3.3: ContikiMAC RDC mechanism.

THE INTERNET OF THINGS
Johan West'o & Dag Bj'orklund
CHAPTER 3. LOW-POWER AND LOSSY NETWORKS

Ψαν του Wake up interval for sleeping nodes.

Του να του να

 $\tau_{\rm s}$ Strobe transmitting time (dependent on frame length).

 $\tau_{\rm i}$ Interval between strobes.

Ta Time needed before an acknowledgement to a sent frame can be detected by a sender.

 $\tau_{\mathbf{r}}$ Time needed to perform a Clear Channel Assessment (CCA).

τ_c Interval between CCA checks.

$$\tau_{\rm a} < \tau_{\rm i} < \tau_{\rm c} < \tau_{\rm c} + 2\tau_{\rm r} < \tau_{\rm s}$$

ContikiMAC Mechanism – Fast Asleep

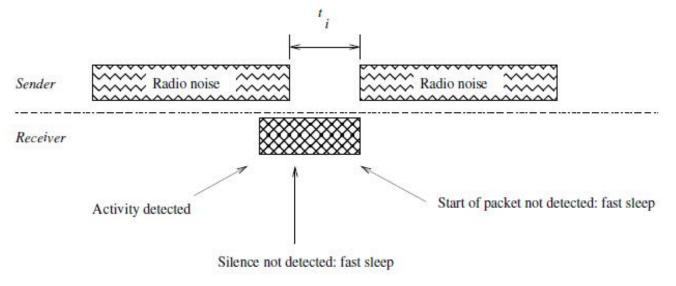


Figure 5: The ContikiMAC fast sleep optimization: if a silence period is not detected before t_l , the receiver goes back to sleep. If the silence period is longer than t_i , the receiver goes back to sleep. If no packet is received after the silence period, even if radio activity is detected, the receiver goes back to sleep.

ContikiMAC Mechanism - Phase Lock

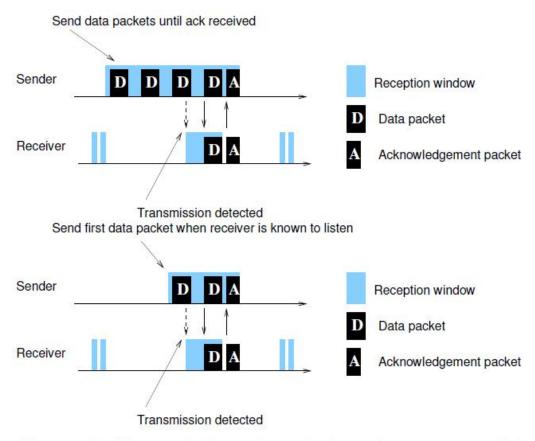


Figure 6: Transmission phase-lock: after a successful transmission, the sender has learned the wake-up phase of the receiver and subsequently needs to send fewer transmissions.

Implementation

- The ContikiMAC implementation in Contiki 2.5
 uses the Contiki real-time timers (rtimer) to
 schedule its periodic wake-ups.
- The ContikiMAC wake-up mechanism runs as a protothread which performs the periodic wakeups and implements the fast sleep optimization.
- The phase-lock mechanism is implemented as a separate module from ContikiMAC which maintains a list of neighbors and their wake-up phases.
- The neighbor is evicted from the list after a fixed number of failed transmissions or having no link layer ack within a fixed time.

Evaluation

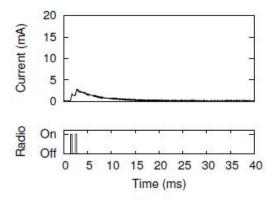


Figure 7: A ContikiMAC wake-up with no signal detected. The two CCAs are seen in the lower graph.

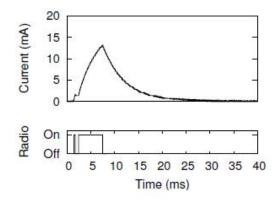


Figure 8: A ContikiMAC wake-up with radio activity detected and where the fast sleep optimization quickly turns the radio off.

Figure 7 shows the current draw of a ContikiMAC wake-up that did not result in any packet reception. In the lower graph, we see that the radio is turned on twice, to perform the two CCAs of the ContikiMAC wake-up.

Figure 8 shows a ContikiMAC wake-up where the second CCA detected spurious radio activity. The radio is then kept on for a while longer, until the fast sleep optimization turns off the radio.

Evaluation

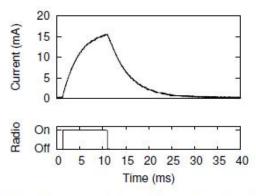
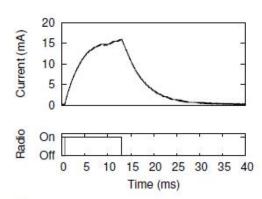



Figure 9: Broadcast reception: wake-up, packet detected, broadcast packet received.

unicast packet received

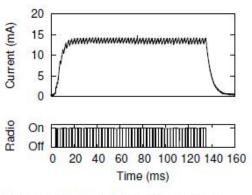


Figure 11: Broadcast transmission.

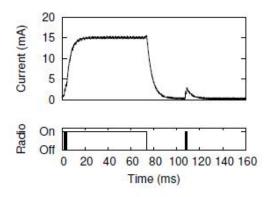


Figure 10: Unicast reception: wake-up, packet detected, Figure 12: Non-synchronized unicast transmission (with subsequent wake-up at 110 ms

Evaluation - Micro Benchmarks

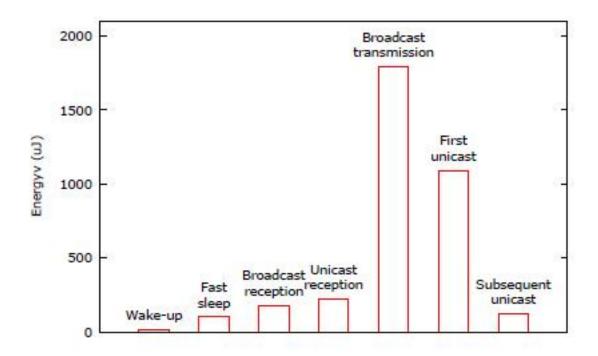


Figure 14: The energy consumption of the individual ContikiMAC operations.

Evaluation – Power Consumption

 We use the radio duty cycle: the portion of time in which the radio is on as indicator of radio power consumption

RDC choices for MAC layer:

- ContikiMAC
- X-MAC
- LPP (Low-Power probing)
- CX-MAC (Compatibility X-MAC)
- NULLRDC

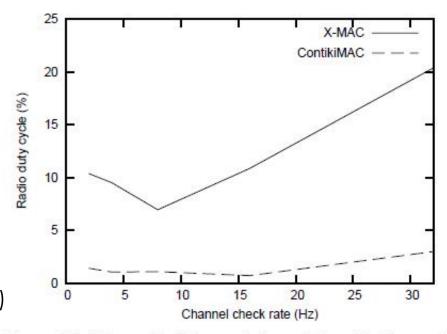
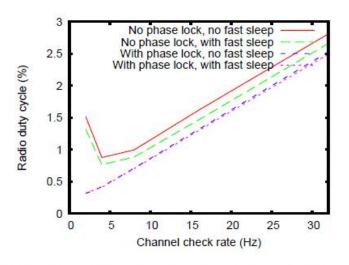
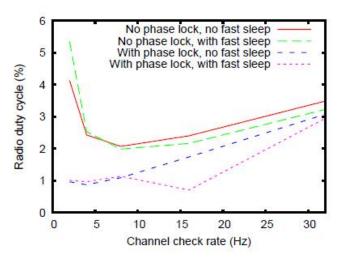




Figure 15: The radio duty cycle in a data collection network with path loss, with X-MAC and ContikiMAC, as a function of the wake-up frequency (in the graph called channel check rate).

Evaluation – Power Consumption

loss.

Figure 16: The network radio duty cycle with Contiki- Figure 17: The network radio duty cycle with Contiki-MAC, averaged for all nodes a the network without path MAC, averaged for all nodes in a network with path loss.

- Figure 16 shows that the fast sleep and phase-lock optimizations significantly reduce power consumption.
- Figure 17 shows that optimizations are more efficient in the face of loss. This is because of a phase-locked transmission being shorter than nonphase-locked transmissions, leading both to less energy being spent on transmissions and to less radio congestion.

Conclusion

- The ContikiMAC uses a simple but elaborate timing scheme to allow its wake-up mechanism to be highly power efficient, a phase-lock mechanism to make transmissions efficient, and a fast sleep optimization to allow receivers to quickly go to sleep when faced with spurious radio interference.
- The Measurements show that the energy cost of ContikiMAC mechanism is significantly lower than existing duty cycling mechanisms and that the phase-lock and fast sleep mechanisms reduce the network power consumption between 10% and 80%, depending on the wakeup frequency of the devices in the network.

Thank you.