

The War Between Mice and Elephants

Liang Guo, Ibrahim Matta

Presented by Vasilios Mitrokostas for CS 577 / EE 537

Images taken from Pankaj Didwania's 2013 presentation of this paper

An Issue of Fairness

Long connections are unintentionally favored over short connections by TCP congestion control algorithm

Mouse

Mouse

Many connections, short traffic

Elephant

Elephant

Few connections, large traffic

· 80-20 rule

The Elephant Wins

- Blame TCP; three main factors
 - Conservative ramp up of transmission rate
 - Painful packet loss for shorter connections
 - No packet samples for mice

TCP: Conservative Ramp Up

- Sending window starts at the smallest value
- This hurts many small connections which need to begin at this point each time

TCP: Painful Packet Loss

- A short connection's congestion window doesn't have enough packets to detect packet loss by duplicate ACKs
 - . . . so it's only detected by timeout, slowing the rate of data transmission

TCP: No Packet Samples

- TCP uses samples of packets to help determine timeout
 - . . . but each of the many, short connections lacks sampling data, so timeouts are set to conservative, large value

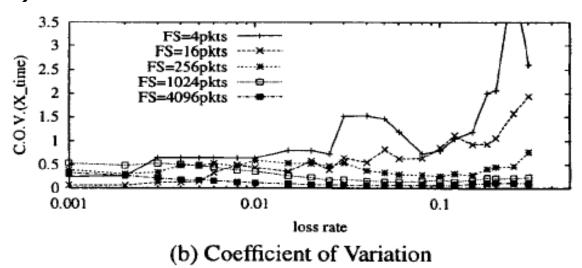
How to Combat Unfairness

- Guo and Matta's proposal; fight fire with fire
- Simulations say: give short connections preferential treatment to induce fairness
 - A weighted policy to classify TCP flows by size
 - RIO (RED with In and Out) queue management

Validating the Problem

- How did the authors draw these conclusions?
 - A study of short and long TCP flows
 - Previous papers highlight the uphill battle faced by mice . . . but their solutions modify TCP
 - Issue: isolating flows by class (short vs. long) may cause packet reordering, leading to poor performance
- Guo and Matta: place control inside the network with RIO

Proposed Solution

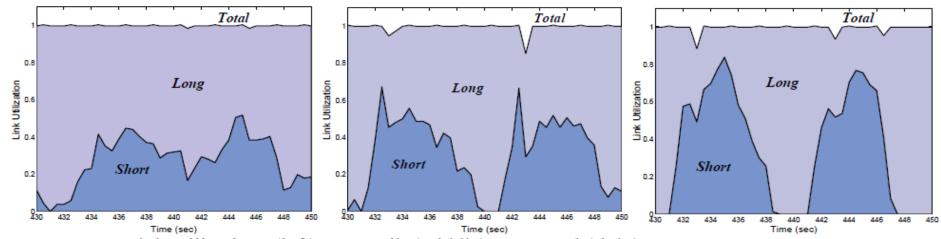

Mitigate packet loss by giving preferential treatment to short connections

RIO: Classify In or Out

- Classify packets as In or Out to determine size, allowing for preferential treatment
- Favor short connections at bottleneck link queues, so they experience fewer dropped packets

Why Is Packet Loss Critical?

- When loss rate is small, average transmission time is not greatly impacted
- When loss rate is large, time increases drastically (see TCP-Newreno test below, randomly dropped packets)



Why Does Variability Happen?

- High loss rate = high chance for TCP to enter exponential backoff (congestion avoidance) phase, resulting in more variability
- Low loss rate = two options for TCP: transmit aggressively with slow-start or transmit in congestion avoidance phase, resulting in more variability (less consistency)
- First source of variability is on individual packets greater impact on short flows due to number
- Second source of variability in end-phase—greater impact on long flows which finish beyond slowstart

Comparison by Simulation

- Network simulator ns by E. Amir et al.
- 10 long flows (100 packets) vs. 10 short flows (10,000 packets) (TCP-Newreno)
- · 1.25Mbps link

Link utilization: (left) DropTail, (middle) RED, and (right) RIO-PS

Too Unfair to Elephants?

- RIO-PS (preferential treatment to short flows) graph shows short flows taking more of the total link utilization than long flows . . . unequal
- This is OK; early completion returns resources to long flows, so long-term goodput is maintained
- In fact, it results in a more stable environment for long flows because of fewer disturbances from short flows (once they finish)

Goodput Comparison

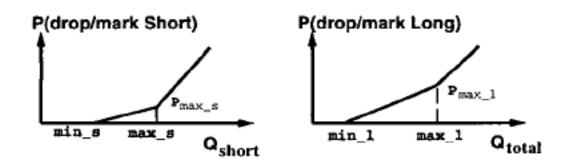
- Overall goodput for all flows remains stable
- 500 second simulation, note difference in load (RED and RIO-PS favor higher loads)

Link B/W	Flows	DropTail	RED	RIO-PS
1.25Mbps	All	153479	154269	154486
	Short	40973	49897	49945
	Long	112506	104372	104541
1.5Mbps	All	185650	184315	183154
	Short	43854	49990	49990
	Long	141796	134325	133164

TABLE I

NETWORK GOODPUT UNDER DIFFERENT SCHEMES

Implementation: Edge Routers


- Employ a Diffserv-like network architecture to differentiate between short and long TCP flows
- This is done through edge routers
 - Edge router tracks each flow, counting packets
 - Once a threshold Lt is met, flow is considered long (the first Lt packets of such a flow are considered short)
 - Authors claim this is OK because first few packets are vulnerable to packet losses, and this makes the system fair to all starting TCP connections
 - Every so often (Tu time units), flow is considered finished if no packets are observed in the period

Choosing Variables

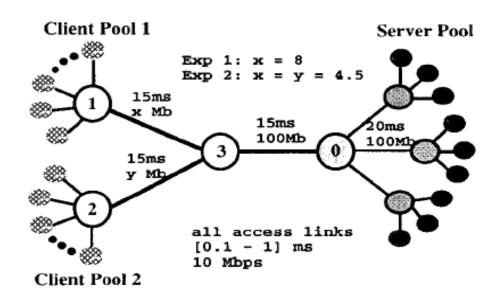
- Threshold Lt can be static or dynamic; can allow edge router to modify every Tc based on short and long flow counts . . . the Short-to-Long-Ratio (SLR)
- Choosing T_u and T_c needs further research ($T_u = 1$ sec, $T_c = 10$ sec in simulation)

Implementation: Core Routers

- Core routers give preferential treatment to short packets using RIO
- See packet dropping figure below; note that In (short) packet queuing is not affected by Out (long) packet arrivals

RIO queue with Preferential treatment to Short flows

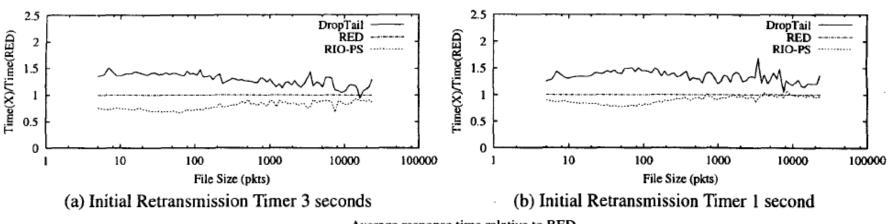
Packet Reordering: Not a Problem


- Only one FIFO queue is used for all packets, short and long
 - No packet reordering even if same-flow packets are classified differently

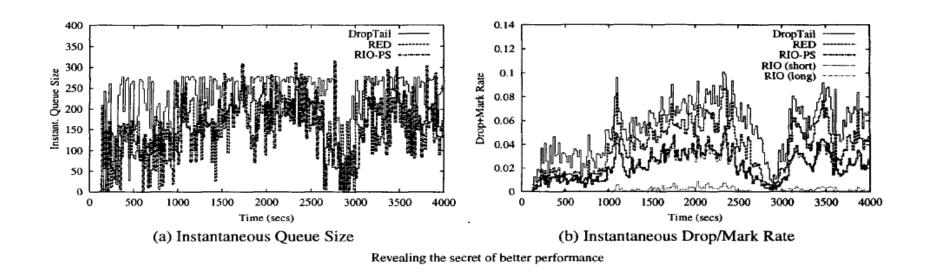
Simulation

Is RIO-PS as beneficial as claimed?

Simulation of RIO-PS

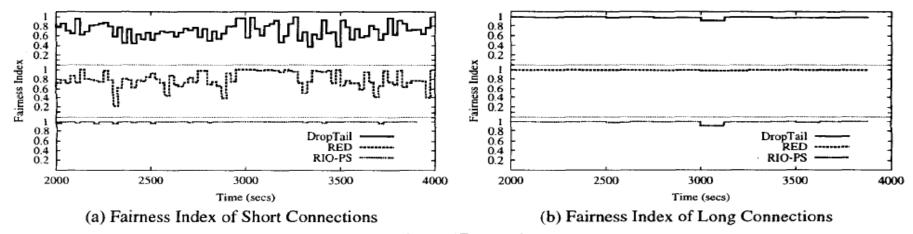

- Web traffic model; each page requires TCP connection
 - Tuned to maximize power, ratio between throughput and delay. High power implies high throughput and low delay

Simulation Topology

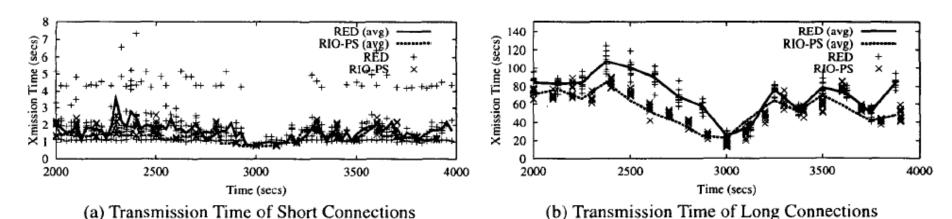

Single Client Experiment

- 4,000-second simulation
 - (2,000-second warm-up)
- · Record response time using preferential treatment
 - What about initial timeout (ITO) from 3 seconds to 1 second? Authors warn unnecessary retransmissions may lead to congestion collapse (slow links or high round-trip delay), but plot results anyway (donkey)

Advantage


- Performance improvements; reduction on overall mark/drop rate without risk of queue overload at the bottleneck link
 - Why? Short flows now have fewer packet drops, which means fewer congestion notifications

Fairness Index


 Computed using a fairness index formula based on response time T_i

$$FI = \frac{\left(\sum_{i=1}^{10} T_i\right)^2}{10\sum_{i=1}^{10} T_i^2},$$

Fairness Index Continued

Transmission times and goodput

Transmission Time of Foreground Traffic

Scheme	DropTail	RED	RIO-PS
Expl (ITO=3sec)	4207841	4264890	4255711
Expl (ITO=1sec)	4234309	4254291	4244158

NETWORK GOODPUT OVER THE LAST 2000 SECONDS

Unbalanced Requests Experiment

 Paper suggests preferential treatment still helps, but results are captured in another paper due to space limitation

Evaluation

Does the model hold in real-world cases? Can it be feasibly deployed?

Evaluating the Simulation Model

- The web traffic model used for simulation is the "Dumbbell and Dancehall" one-way traffic model
- Guo and Matta claim that the RIO-PS scheme still grants an advantage when reverse traffic is present
 - Why? Short exchanges due to control packet handling on the client side are protected by this scheme (due to the preferential treatment)
- Authors also say simulation results mean RIO-PS works in extremely unbalanced cases, so odd traffic topologies would not be a problem (is this true?)

Evaluating Deployment

- A paper on edge devices is referenced to show that per-flow state maintenance (In vs. Out) and per-packet processing does not significantly impact end-to-end performance (sounds nebulous)
- RIO-PS only needs to be implemented at busy bottleneck links

Conclusions

- RIO-PS benefits short connections, which represent the majority of TCP flows
 - Long flows are thus minimally impacted
- Goodput is either the same or improved, depending on the network
- Flexible architecture; only edge routers need to be tuned