
Compound TCP in NS-3

Keith Craig

1

Worcester Polytechnic Institute

What is Compound TCP?

• As internet speeds increased, the long ‘ramp’ time
of TCP Reno became an increasingly large issue.

• According to an IETF paper in 2003, a 10Gbps line
would require no more than 1 drop every 100
minutes to achieve maximal throughput.

• A class of TCP algorithms known as “high speed”
TCP algorithms attempt to alleviate this problem.

• These algorithms ramp up and recover after loss
more quickly in order to more efficiently saturate
available bandwidth.

2

Worcester Polytechnic Institute

The Trouble with BIC and Cubic

• BIC and Cubic (and loss-only based algorithms in
general) exacerbate unfairness in scenarios with
competing streams.

3

Worcester Polytechnic Institute

A Hybrid Approach

• Compound TCP attempts to mitigate the
unfairness issues with BIC and Cubic by
introducing a ‘delay based’ component to the
congestion window, in the style of TCP Vegas.

• Broadly, Compound TCP calculates the total
congestion window as the sum of a loss-based
window (cwnd) that tracks packet drops, and a
delay-based window (dwnd) modified by a moving
RTT average.

4

Worcester Polytechnic Institute

Starting Up

• At the start of a new connection, CTCP uses the
same slow-start behavior that TCP Reno uses.

• The dwnd is set to 0, disabling it during slow-
start.

• For each packet ACKed, the cwnd is incremented
by 1.

• The algorithm exits slow-start at the first dropped
packet.

5

Worcester Polytechnic Institute

Loss-Based Window

• CTCP uses the AIMD approach from TCP Reno.

• When a packet is successfully ACKed, the cwnd
increases by 1/cwnd+dwnd.

• When a packet loss is detected, the cwnd is
decreased by half.

6

Worcester Polytechnic Institute

Delay-Based Window

• A delay-based window attempts to predict
oncoming congestion by tracking RTT variations.

• CTCP’s algorithm for delay is based on TCP Vegas,
the ‘standard’ form of delay-based window TCP
algorithms.

• Broadly, given knowledge of the ‘best-case’ RTT
and the current (or more typically, exponential
moving average) RTT, decrease the dwnd if the
difference between the two exceeds a defined
parameter.

7

Worcester Polytechnic Institute

Delay-Based Numbers

• 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =
𝑤𝑖𝑛𝑑𝑜𝑤

𝑏𝑒𝑠𝑡𝑅𝑇𝑇

• 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 =
𝑤𝑖𝑛𝑑𝑜𝑤

𝑚𝑜𝑣𝑖𝑛𝑔𝑅𝑇𝑇

• 𝑏𝑎𝑐𝑘𝑙𝑜𝑔 =
𝑏𝑒𝑠𝑡𝑅𝑇𝑇 ∗ 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

• Here, backlog is then the number of additional
packets added delay has ‘stuck’ in the link.

• If the packet backlog exceeds a threshold γ,
delay-based throttling occurs.

8

Worcester Polytechnic Institute

Window Behavior Goals

• In order to set the throttling behavior of the
delay-based window, the creators of CTCP decided
what the overall behavior of CTCP should be and
then set the dwnd behavior to ‘fill in the gaps’

• When neither delay nor drops are occurring, the
CTCP window expands exponentially:

• 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡 + 1 = 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡 + 𝛼 ∗ 𝑤𝑖𝑛 𝑡 𝑘

• When loss occurs, multiplicatively decrease the
window.

• 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡 + 1 = 𝑤𝑖𝑛𝑑𝑜𝑤 𝑡 ∗ (1 − 𝛽)

9

Worcester Polytechnic Institute

Dwnd Fills in the Gaps

• Since dwnd is just filling in the gaps, dwnd(t+1)
is window(t+1) – cwnd(t+1)

• So, with backlog < γ,

• 𝑑𝑤𝑛𝑑 𝑡 + 1 = 𝑑𝑤𝑛𝑑 𝑡 + 𝛼 ∗ 𝑤𝑖𝑛 𝑡 𝑘 − 1

• When loss is detected,

• 𝑑𝑤𝑛𝑑 𝑡 + 1 = (𝑤𝑖𝑛 𝑡 ∗ 1 − 𝛽 −
𝑐𝑤𝑛𝑑

2
)

• Finally, some new behavior has to be defined for
when backlog > γ, but no loss has yet occurred.

10

Worcester Polytechnic Institute

CTCP Under Delay Conditions

• CTCP needs to back off under delay conditions
proportionally to the amount of ‘backlog’ it
estimates in the link.

• Thus, when backlog > γ,

• 𝑑𝑤𝑛𝑑 𝑡 + 1 = 𝑑𝑤𝑛𝑑 𝑡 − 𝜁 ∗ 𝑏𝑎𝑐𝑘𝑙𝑜𝑔

• The dwnd cannot go below zero, so in extreme
delay conditions, CTCP degrades down to its cwnd
behavior, TCP Reno.

11

Worcester Polytechnic Institute

CTCP Implementations

• CTCP is the default implementation in Windows
systems, beginning with Windows Vista and
Windows Server 2008.

• A Linux implementation was added to the kernel,
but no longer compiles in versions 2.6.17 or later,
due to changes to the TCP stack implementation.

• The closed nature of Windows and the current
state of the Linux implementations means there
may be no open source implementation of CTCP
available.

12

Worcester Polytechnic Institute

Windows CTCP

• The Windows CTCP implementation, owing to the
closed nature of Windows, is itself proprietary.

• The original version appearing in Windows Vista,
however, was written by the paper authors, and
the original version of it was used for testing in
the paper.

• A few implementation optimizations are
suggested in the paper:
─ Sampling only M RTTs per segment, where M is

proportional to the RTT itself, since TCP flows only change
their sending rate as their RTT

─ Setting ‘k’ to be ¾ instead of 5/6, as it is faster to
calculate.

13

Worcester Polytechnic Institute

Linux CTCP

• The implementation of CTCP in Linux (2.6.16) is
similar, but not identical to the original CTCP
paper.

• Has parameters alpha, beta, gamma, and zeta as
in the paper.

• α=3, β=1, γ=30, ζ=1

• K (the exponent in cwnd growth) is defined at a
fixed 0.75.

14

Worcester Polytechnic Institute

Linux CTCP

• The current RTT value is not set based on a
moving average, but rather is the last seen RTT.

• Additionally, RTTs are sampled. This is an
optimization mentioned in the original CTCP paper
to reduce packet handling overhead.

• The CTCP paper recommended k = 5/6 (based on
emulating the HSTCP response slope). The linux
implementation uses 0.75 as an approximation,
allowing the use of Newton-Raphson for quartic
roots.

15

Worcester Polytechnic Institute

CTCP In NS-3

• The ns-3 simulator is the latest version of the ns
family of network simulators originally created
and used in the RED paper.

• Many newer algorithms (some of which were
implemented in ns-2) are not yet implemented in
ns-3.

• CTCP is one of the algorithms not yet
implemented; Cubic was only recently
implemented in ns-3.

16

Worcester Polytechnic Institute

Which Version of CTCP?

• Since both the implied implementation of CTCP on
Windows and the verifiable implementation of
CTCP on Linux are similar in their modifications
from ‘paper CTCP’, both should provide similar
performance.

• The Linux version of CTCP was thus used as the
primary implementation reference for CTCP in ns-
3.

17

Worcester Polytechnic Institute

Implementation in ns-3

• The underlying TcpSocketBase class in ns-3
provides the core TCP functionality.

• TcpSocket provides NewAck() and DupAck()
virtual methods to override to modify the cwnd,
dwnd and window parameters.

• TcpSocket also provides the slow-start
functionality that CTCP uses.

18

Worcester Polytechnic Institute

Implementation in ns-3

• NewAck() is called from the lower layers
whenever a new acknowledgement is received.

• When this happens, we can increment our cwnd
value according to additive increase.

• We also update the RTT estimates and
IncreaseDwnd() or ThrottleDwnd() as necessary.

• DupAck() is called whenever a packet has been
dropped.

• When this happens, cwnd is halved and dwnd is
reduced by the (1-beta) factor.

 19

Worcester Polytechnic Institute

Verification

• In order to verify the correctness of the
implemented algorithm in ns-3, it should be
tested against the behavior of real-world CTCP
implementations – Windows and Linux.

20

Worcester Polytechnic Institute

Questions?

21

