
ACN : TCP Congestion Control 1

TCP 
Congestion Control



ACN : TCP Congestion Control 2

TCP Congestion Control

• Essential strategy :: The TCP host sends packets into 
the network without a reservation and then the host 
reacts to observable events.

• Originally TCP assumed FIFO queuing.
• Basic idea :: each source determines how much 

capacity is available to a given flow in the network.
• ACKs are used to ‘pace’ the transmission of packets 

such that TCP is “self-clocking”. 



ACN : TCP Congestion Control 3

AIMD
(Additive Increase / Multiplicative Decrease)

• CongestionWindow (cwnd) is a variable held by the 
TCP source for each connection.

• cwnd is set based on the perceived level of congestion. 
The Host receives implicit (packet drop) or explicit 
(mark) indications of internal congestion.

MaxWindow :: min (CongestionWindow , AdvertisedWindow)

EffectiveWindow = MaxWindow – (LastByteSent -LastByteAcked)



ACN : TCP Congestion Control 4

Multiplicative Decrease

* The key assumption is that a dropped packet and the 
resultant timeout is due to congestion at a router or a 
switch.

Multiplicate decrease:: TCP reacts to a timeout by halving 
cwnd.

• Although cwnd is defined in bytes, the literature often 
discusses congestion control in terms of packets (or 
more formally in MSS == Maximum Segment Size).

• cwnd is not allowed below size of a single packet.



ACN : TCP Congestion Control 5

Additive Increase

• Additive Increase is a reaction to perceived available 
capacity.

• Linear Increase basic idea:: For each “cwnd’s worth” 
of packets sent, increase cwnd by 1 packet.

• In practice, cwnd is incremented fractionally for each 
arriving ACK.

increment = MSS x (MSS /cwnd)
cwnd = cwnd + increment



ACN : TCP Congestion Control 6

AIMD
(Additive Increase / Multiplicative Decrease)

• It has been shown that AIMD is a necessary congestion 
for TCP congestion control to be stable.

• Because the simple CC mechanism involves timeouts 
that cause retransmissions, it is important that hosts 
have an accurate Timeout mechanism.

• Timeouts set as a function of average RTT and standard 
deviation of RTT.

• However, TCP hosts only sample round-trip time once 
per RTT using coarse-grained clock.



ACN : TCP Congestion Control 7

Slow Start
• Linear additive increase takes too long to ramp up 

a new TCP connection from cold start
• Beginning with TCP Tahoe, the slow start 

mechanism was added to provide an initial 
exponential increase in the size of cwnd.

Remember mechanism by: slow start prevents a slow 
start. Morevoer, slow start is slower than sending 
a full advertised window’s worth of packets all at 
once.



ACN : TCP Congestion Control 8

Slow Start
• The source starts with cwnd = 1.
• Every time an ACK arrives, cwnd is incremented.
!cwnd is effectively doubled per RTT “epoch”.
• Two slow start situations:

" At the very beginning of a connection {cold start}.
" When the connection goes dead waiting for a timeout to 

occur (i.e, advertized window goes to zero!)
• However, in the second case the source has more 

information. The current value of cwnd can be 
saved as a congestion threshold. This is also 
known as the “slow start threshold” ssthresh.



ACN : TCP Congestion Control 9

Congestion
window

10

5

15

20

0

Round-trip times

Slow
start

Congestion
avoidance

Congestion occurs

Threshold

Figure 7.63

TCP Congestion Control

Leon-Garcia & Widjaja:  Communication Networks

Copyright ©2000 The McGraw Hill Companies



ACN : TCP Congestion Control 10

Fast Retransmit
• Coarse timeouts remained a problem, and Fast retransmit 

was added with TCP Tahoe.
• Since the receiver responds every time a packet arrives, this 

implies the sender will see duplicate ACKs.
Basic Idea:: use duplicate ACKs to signal lost packet.

Fast Retransmit
Upon receipt of three duplicate ACKs, the TCP Sender

retransmits the lost packet.



ACN : TCP Congestion Control 11

Fast Retransmit
• Generally, fast retransmit eliminates about half the 

coarse-grain timeouts.
• This yields roughly a 20% improvement in 

throughput.
• Note – fast retransmit does not eliminate all the 

timeouts due to small window sizes at the source.



ACN : TCP Congestion Control 12

Fast Recovery
• Fast recovery was added with TCP Reno.
Basic idea:: When fast retransmit detects three 

duplicate ACKs, start the recovery process from 
congestion avoidance region and use ACKs in the 
pipe to pace the sending of packets.

Fast Recovery
After Fast Retransmit, half cwnd and commence

recovery from this point using linear additive increase
‘primed’ by left over ACKs in pipe.



ACN : TCP Congestion Control 13

Modified Slow Start

• With fast retransmit, slow start only 
occurs:
– At cold start
– After a coarse-grain timeout

• This is the difference between TCP 
Tahoe and TCP Reno!!


