Packet Leashes: A Defense against Wormhole Attacks in Wireless Networks

Yih-Chun Hu (Carnegie Mellon University) Adrian Perrig (Carnegie Mellon University) David B. Johnson (Rice University)

Presented by: Jón T. Grétarsson 5 April, 2005

CS577: Advanced Computer Networks

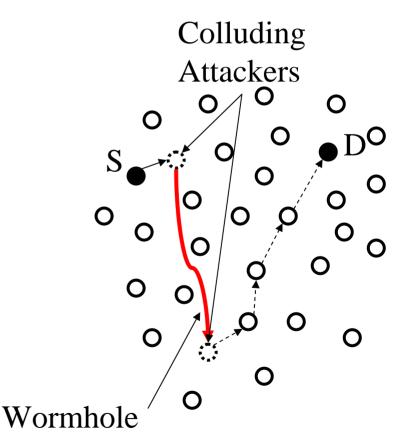
Outline

- Introduction
- Problem Statement
- Related Work
- Assumptions and Notation
- Detecting Wormhole Attacks
- Temporal Leashes and the TIK Protocol
- Evaluation
- Conclusions

Introduction

The Authors

- Yih-Chun Hu
- Adrian Perrig
- David B. Johnson


Problem Statement

Wormholes!

Wormholes in MANET

- Packets are "tunneled" from one location to another
- If done reliably, no harm no foul
- If done selectively, much damage can be done!

CS577: Advanced Computer Networks

The Threat

Permanent Denial-of-Service

Disruption to Routing Protocols

Unauthorized Access

Related Work

Related Work

RF Watermarking

Intrusion Detection

• 802.11i

Assumptions and Notation

Assumptions & Notation

- Resource Constrained Nodes
- Existing key distribution system
- HMAC a message authentication code used for authentication
- Bidirectional links are not necessary

Detecting Wormhole Attacks

Leashes

 Somehow restrict the transmission distance of the packet

Geographical Leashes

Temporal Leashes

Geographical Leashes

- Node Location
- Loosely Synchronized Clocks
- Bounded Velocity of packet
- d_{sr} is distance between two nodes
- ∆ is error in time

$$d_{sr} \le ||p_s - p_r|| + 2\nu \cdot (t_r - t_s + \Delta) + \delta$$

Temporal Leashes

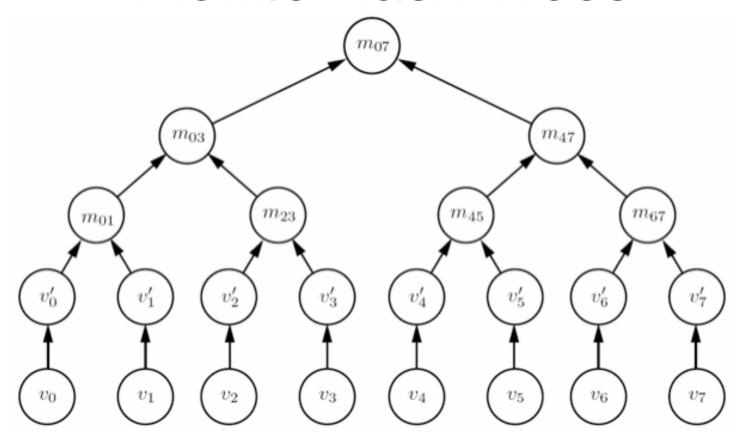
Requires tight synchronization of clocks

MAC contention issues

Digital signature scheme can guarantee timestamp

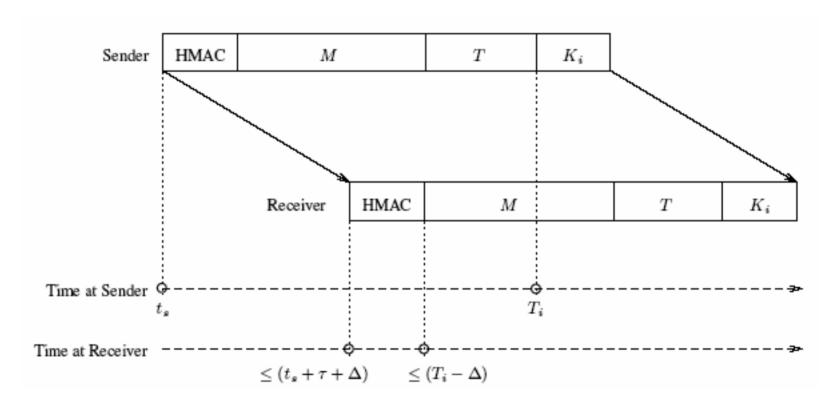
Temporal Leashes and the TIK Protocol

Authentication


All information (timestamp, expiration, position) must be verified

 Traditional methods of verification are too expensive

Merkle Hash Trees are the solution!



Merkle Hash Trees

TESLA with Instant Key Disclosure

Evaluation

How it was done

 Calculated required number of Hashes per second for algorithm

 Calculated computational power of portable devices

Results

 Suitable for laptops and PDA's, but not for resource scarce networks

Not enough space to store the packet!

Conclusions

Conclusions

- Wormholes are dangerous! They can degrade performance of Mobile Ad Hoc routing algorithms
- Both Geographical and Temporal leashes can detect wormholes
- TIK is an implementation of Temporal leashes that can be used when there is sufficiently tight time synchronization
- TIK is not usable in resource-scarce networks

Questions? Comments?

Donations?

References

 Graphics borrowed from http://www.panda.uvic.ca/seminars/stor age/PacketLeashes.ppt, http://www.ece.cmu.edu/~adrian/project s/ secure-routing/infocom2003.pdf

