
Distributed File Systems

CS4513 Distributed Computer Systems

Presented by Jae Chung

DFS Overview

File System
Service

Client

Client

Client

! DFS Issues
! Security
! Transparency
! Performance
! Reliability
! Availability

! …

DFS Overview (Cont.)
! Distributed file system (DFS) – a distributed

implementation of the classical time-sharing model of
a file system, where multiple users share files and
storage resources.

! A DFS manages set of dispersed storage devices

! Overall storage space managed by a DFS is
composed of different, remotely located, smaller
storage spaces.

! There is usually a correspondence between
constituent storage spaces and sets of files.

DFS Structure
! Service – software entity running on one or more

machines and providing a particular type of function
to a priori unknown clients.

! Server – service software running on a single
machine.

! Client – process that can invoke a service using a
set of operations that forms its client interface.

! A client interface for a file service is formed by a set
of primitive file operations (create, delete, read,
write).

! Client interface of a DFS should be transparent, i.e.,
not distinguish between local and remote files.

Outline

! Introduction
! DFS Issues

! Naming and Transparency
! Remote File Access
! Stateful versus Stateless Service
! File Replication

! Example Systems
! AFS (vs. NFS)

Naming and Transparency
! Naming – mapping between logical and physical

objects.

! Multilevel mapping – abstraction of a file that hides
the details of how and where on the disk the file is
actually stored.

! A transparent DFS hides the location where in the
network the file is stored.

! For a file being replicated in several sites, the
mapping returns a set of the locations of this file’s
replicas; both the existence of multiple copies and
their location are hidden.

Naming Structures
! Location transparency – file name does not

reveal the file’s physical storage location.
! File name still denotes a specific, although hidden, set of

physical disk blocks.
! Convenient way to share data.
! Can expose correspondence between component units and

machines.

! Location independence – file name does not need
to be changed when the file’s physical storage
location changes.
! Better file abstraction.
! Promotes sharing the storage space itself.
! Separates the naming hierarchy form the storage-devices

hierarchy.

Naming Schemes
! Files named by combination of their host name and

local name; guarantees a unique systemwide name.

! Attach remote directories to local directories, giving
the appearance of a coherent directory tree; only
previously mounted remote directories can be
accessed transparently.

! Total integration of the component file systems.
! A single global name structure spans all the files in the

system.
! If a server is unavailable, some arbitrary set of directories on

different machines also becomes unavailable.

DFS Approaches (Files Access)
! Computation Migration

! Remote Service Oriented
! Caching (Blocks) for Performance
! Server Centric Data Management → Simple and Reliable
! Ex) NFS

! Data Migration
! File Caching Oriented
! Cooperative Data Management → Complex but Scalable
! Ex) Andrew File System (AFS)

Remote File Access (Caching)
! Reduce network traffic by retaining recently accessed

disk blocks in a cache, so that repeated accesses to
the same information can be handled locally.

! If needed data not already cached, a copy of data is brought
from the server to the user.

! Accesses are performed on the cached copy.
! Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in
different caches.

! Cache-consistency problem – keeping the cached copies
consistent with the master file.

Cache Location - Disk vs. Memory
! Advantages of disk caches

! More reliable.
! Cached data kept on disk are still there during recovery and

don’t need to be fetched again.

! Advantages of main-memory caches:
! Permit workstations to be diskless.
! Data can be accessed more quickly.
! Performance speedup in bigger memories.
! Server caches (used to speed up disk I/O) are in main

memory regardless of where user caches are located; using
main-memory caches on the user machine permits a single
caching mechanism for servers and users.

Cache Update Policy
! Write-through – write data through to disk as soon

as they are placed on any cache. Reliable, but poor
performance.

! Delayed-write – modifications written to the cache
and then written through to the server later. Write
accesses complete quickly; some data may be
overwritten before they are written back, and so
need never be written at all.
! Poor reliability; unwritten data will be lost whenever a user

machine crashes.
! Variation – scan cache at regular intervals and flush blocks

that have been modified since the last scan.
! Variation – write-on-close, writes data back to the server

when the file is closed. Best for files that are open for long
periods and frequently modified.

Consistency
! Is locally cached copy of the data consistent with the

master copy?

! Client-initiated approach
! Client initiates a validity check.
! Server checks whether the local data are consistent with the

master copy.

! Server-initiated approach
! Server records, for each client, the (parts of) files it caches.
! When server detects a potential inconsistency, it must react.

Comparing Caching & Remote Service

! In caching, many remote accesses handled efficiently
by the local cache; most remote accesses will be
served as fast as local ones.

! Servers are contracted only occasionally in caching
(rather than for each access).
! Reduces server load and network traffic.
! Enhances potential for scalability.

! Remote server method handles every remote access
across the network; penalty in network traffic, server
load, and performance.

! Total network overhead in transmitting big chunks of
data (caching) is lower than a series of responses to
specific requests (remote-service).

Caching & Remote Service (Cont.)

! Caching is superior in access patterns with infrequent
writes. With frequent writes, substantial overhead
incurred to overcome cache-consistency problem.

! Benefit from caching when execution carried out on
machines with either local disks or large main
memories.

! Remote access on diskless, small-memory-capacity
machines should be done through remote-service
method.

! In caching, the lower intermachine interface is
different form the upper user interface.

! In remote-service, the intermachine interface mirrors
the local user-file-system interface.

Stateful File Service
! Mechanism.

! Client opens a file.
! Server fetches information about the file from its disk, stores

it in its memory, and gives the client a connection identifier
unique to the client and the open file.

! Identifier is used for subsequent accesses until the session
ends.

! Server must reclaim the main-memory space used by clients
who are no longer active.

! Increased performance.
! Fewer disk accesses.
! Stateful server knows if a file was opened for sequential

access and can thus read ahead the next blocks.

Stateless File Server

! Avoids state information by making each
request self-contained.

! Each request identifies the file and position in
the file.

! No need to establish and terminate a
connection by open and close operations.

Distinctions Between
Stateful & Stateless Service

! Failure Recovery.
! A stateful server loses all its volatile state in a

crash.
! Restore state by recovery protocol based on a dialog

with clients, or abort operations that were underway
when the crash occurred.

! Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed
client processes (orphan detection and elimination).

! With stateless server, the effects of server failure
sand recovery are almost unnoticeable. A newly
reincarnated server can respond to a self-
contained request without any difficulty.

Distinctions (Cont.)
! Penalties for using the robust stateless service:

! longer request messages
! slower request processing
! additional constraints imposed on DFS design

! Some environments require stateful service.
! A server employing server-initiated cache validation cannot

provide stateless service, since it maintains a record of
which files are cached by which clients.

! UNIX use of file descriptors and implicit offsets is inherently
stateful; servers must maintain tables to map the file
descriptors to inodes, and store the current offset within a
file.

File Replication
! Replicas of the same file reside on failure-

independent machines.
! Improves availability and can shorten service time.
! Naming scheme maps a replicated file name to a

particular replica.
! Existence of replicas should be invisible to higher levels.
! Replicas must be distinguished from one another by

different lower-level names.
! Updates – replicas of a file denote the same logical

entity, and thus an update to any replica must be
reflected on all other replicas.

! Demand replication – reading a nonlocal replica
causes it to be cached locally, thereby generating a
new nonprimary replica.

Outline

! Introduction
! DFS Issues

! Naming and Transparency
! Remote File Access
! Stateful versus Stateless Service
! File Replication

! Example Systems
! AFS (vs. NFS)

Andrew File System (AFS)
! A distributed computing environment under

development since 1983 at Carnegie-Mellon
University.
! http://www-

2.cs.cmu.edu/afs/cs/project/coda/Web/docdir/scalable90.pdf

! Design objectives
! Highly scalable: targeted to span over 5000 workstations.
! Secure: Little discussed here (see the above paper)

! Andrew distinguishes between client machines
(workstations) and dedicated server machines.
Servers and clients run the 4.2BSD UNIX OS and are
interconnected by an internet of LANs.

AFS (Cont.)

A high-level view of AFS architecture File system view at a work station

(trusted)

(un-trusted clients)

AFS (Cont.)
! Dedicated servers, called Vice, present the

shared name space to the clients as an
homogeneous, identical, and location
transparent file hierarchy.

! Clients are presented with a partitioned space
of file names: a local name space and a shared
name space.

! The local name space is the root file system of
a workstation, from which the shared name
space descends.

! Workstations run the Virtue protocol to
communicate with Vice, and are required to
have local disks where they store their local
name space.

AFS (Cont.)
! Clients and servers are structured in clusters

interconnected by a backbone LAN.
! A cluster consists of a collection of workstations and

a cluster server and is connected to the backbone by
a router.

! Servers collectively are responsible for the storage
and management of the shared name space.

! A key mechanism selected for remote file operations
is whole file caching. Opening a file causes it to be
cached, in its entirety, on the local disk.

AFS Shared Name Space
! Andrew’s volumes are small component units

associated with the files of a single client.
! A fid identifies a Vice file or directory. A fid is 96 bits

long and has three equal-length components:
! volume number
! vnode number – index into an array containing the inodes of

files in a single volume.
! uniquifier – allows reuse of vnode numbers, thereby keeping

certain data structures, compact.
! Fids are location transparent; therefore, file

movements from server to server do not invalidate
cached directory contents.

! Location information is kept on a volume basis, and
the information is replicated on each server.

AFS Shared Name Space (Cont.)

vol-loc-db

server-i

path-name : fid vol-num vnode-num uniquifier

32 bits 32 bits 32 bits

0 … 010

server-j

vol-loc-db

j

0 … 011

vol-3vol-k …

inode #

…
USF USF

…
USF USF

vol-nvol-m …

AFS File Operations
! Andrew caches entire files form servers. A client

workstation interacts with Vice servers only during
opening and closing of files.

! Venus – caches files from Vice when they are
opened, and stores modified copies of files back
when they are closed.

! Reading and writing bytes of a file are done by the
kernel without Venus intervention on the cached
copy.

! Venus caches contents of directories and symbolic
links, for path-name translation.

! Exceptions to the caching policy are modifications to
directories that are made directly on the server
responsibility for that directory.

AFS Implementation
! Client processes are interfaced to a UNIX kernel with

the usual set of system calls.
! Venus carries out path-name translation component

by component.
! The UNIX file system is used as a low-level storage

system for both servers and clients. The client cache
is a local directory on the workstation’s disk.

! Both Venus and server processes access UNIX files
directly by their inodes to avoid the expensive path
name-to-inode translation routine.

AFS Implementation (Cont.)
! Venus manages two separate caches:

! one for status
! one for data

! LRU algorithm used to keep each of them bounded in
size.

! The status cache is kept in virtual memory to allow
rapid servicing of stat (file status returning) system
calls.

! The data cache is resident on the local disk, but the
UNIX I/O buffering mechanism does some caching
of the disk blocks in memory that are transparent to
Venus.

ASF vs. NFS – Summary

StatefulStatelessService Type

Server-Initiated (callback)N/AConsistency

SupportedN/AReplication

Write-Through (directory)Write-Through (metadata)

Write-On-ClosePeriodic Flush w/ Disk Sync

Complete and ScaleableSimple and ReliableObjective

Cache-Update
Policy

File Cache Orient (in Disk)Remote Service + CacheFile Access

Location IndependenceLocation TransparencyNaming

Kerberos + EncryptionN/A

Dedicated ServersN/A
Security

AFSNFS

AFS vs. RPC – Performance

Load unit consists of one client workstation
running an instance of the Andrew benchmark.

