
Silberschatz, Galvin and Gagne 200212.1Operating System Concepts

Chapter 12: File System Implementation
This chapter is concerned with the detailsdetailsdetailsdetails associated with

file systems residing on secondary storage.
Specific implementation issues are explored using the disk as

the secondary storage device.

■ File System Structure
■ File System Implementation
■ Directory Implementation
■ Allocation Methods
■ Free-Space Management
■ Efficiency and Performance
■ Recovery
■ Log-Structured File Systems
■ NFS

Silberschatz, Galvin and Gagne 200212.2Operating System Concepts

File-System Structure

Pertinent Disk Details
■ The physical unit of transfer is a disk sector (e.g.,

512 bytes).
■ Sectors can be written in place.
■ Any given sector can be accessed directly.

■ The OS imposes a file system for efficient and
convenient access to the disk.

■ The file system design deals with two distinct
matters:

1. How should the file system look to the user.
2. Creating data structures and algorithms to mapmapmapmap the

logical file system onto the physical secondary-
storage device.

Silberschatz, Galvin and Gagne 200212.3Operating System Concepts

Blocks and Fragments [4.2BSD]Blocks and Fragments [4.2BSD]Blocks and Fragments [4.2BSD]Blocks and Fragments [4.2BSD]

■ Logical transfer of data is in blocks.
■ Blocks are “chunks” or clusters of disk sectors.
■ block size decision:: {a time space tradeoff}
! Uses two sizes block and fragment

! E.g. 4KB block; 1KB fragment

Silberschatz, Galvin and Gagne 200212.4Operating System Concepts

Layered File System

A layered design abstractionA layered design abstractionA layered design abstractionA layered design abstraction

■ I/O control :: device drivers
and interrupt service routines
that perform the actual block
transfers.

■ Basic file system :: issues
generic low-level commands
to device drivers.

■ File organization :: translates
logical block addresses to
physical block addresses.

■ Logical file system :: handles
metadata that includes file-
system structure (e.g.,
directory structure and file
control blocks (FCB’s).

Silberschatz, Galvin and Gagne 200212.5Operating System Concepts

In-Memory File System Structures

On-disk and in-memory structures are needed
to implement a file system:

On disk::
1. Boot control block: needed to boot OS from

a disk partition.
2. Partition control block: holds details about

partition (e.g., blocks in partition, free-
block count, …) superblock
[UNIX],Master File Table [NTFS]

3. Directory structure: to organize files.
4. FCB (or inode) :

Silberschatz, Galvin and Gagne 200212.6Operating System Concepts

A Typical File Control Block

[Linux] inode inode inode inode is the term for FCB

Silberschatz, Galvin and Gagne 200212.7Operating System Concepts

In-Memory File System Structures

On-disk and in-memory structures needed to implement a
file system:

In-memory::
1. Per-process open-file table
2. System-wide open-file table
3. In-memory directory structure
4. In-memory partition table
☛ In some OS’s file system scheme used as interface to

other system aspects. [Unix uses system-wide open table
for networking - e.g.,socket descriptors.]

☛ Caching used extensively – namely, all the information
about an open file is in memory except actual data
blocks.

Silberschatz, Galvin and Gagne 200212.8Operating System Concepts

In-Memory File System Structures

(a) Open
operation

(b) Read
operation

Silberschatz, Galvin and Gagne 200212.9Operating System Concepts

File System Implementation
User Space

Read (4,…)

Open File
Table

File Structure
Table

(per process)

Disk Space

In-core
inode
list

Inode
list

Modified Claypool Figure
[Figure A.7 page 837]

read (4, …)

Data
block

Silberschatz, Galvin and Gagne 200212.10Operating System Concepts

Virtual File Systems

■ Virtual File Systems (VFS) provide an object-oriented way
of implementing file systems.

■ VFS allows the same system call interface (the API) to be
used for different types of file systems.

■ The API is to the VFS interface, rather than any specific
type of file system.
■ VFS provides a mechanism for integrating NFS into

the OS.

Silberschatz, Galvin and Gagne 200212.11Operating System Concepts

Schematic View of Virtual File System

Silberschatz, Galvin and Gagne 200212.12Operating System Concepts

Directory Implementation

■ Linear list of file names with pointer to the data blocks.
✦ simple to program
✦ time-consuming to execute due to linear searchdue to linear searchdue to linear searchdue to linear search

■ Hash Table – linear list with hash data structure.
✦ decreases directory search time
✦ collisions – situations where two file names hash to the

same location
✦ fixed size {disadvantage: hash function is dependent {disadvantage: hash function is dependent {disadvantage: hash function is dependent {disadvantage: hash function is dependent

on fixed size} on fixed size} on fixed size} on fixed size}

Silberschatz, Galvin and Gagne 200212.13Operating System Concepts

File System Implementation

■ Which blocks with which file?
■ File descriptor implementations:

✦ Contiguous
✦ Linked List
✦ Linked List with Index
✦ I-nodes

File
Descriptor

Silberschatz, Galvin and Gagne 200212.14Operating System Concepts

Allocation Methods

■ An allocation method refers to how disk blocks are
allocated for files:

■ Contiguous allocation

■ Linked allocation

■ Indexed allocation

Silberschatz, Galvin and Gagne 200212.15Operating System Concepts

Contiguous Allocation

■ Each file occupies a set of contiguous blocks on the disk.

■ Simple – only starting location (block #) and length
(number of blocks) are required.

■ Random access.

■ Wasteful of space (dynamic storage-allocation problem).

■ Files cannot grow.

Silberschatz, Galvin and Gagne 200212.16Operating System Concepts

Contiguous Allocation of Disk Space

Silberschatz, Galvin and Gagne 200212.17Operating System Concepts

Extent-Based Systems

■ Many newer file systems (I.e. Veritas File System) use a
modified contiguous allocation scheme.

■ Extent-based file systems allocate disk blocks in extents.

■ An extent is a contiguous block of disks. Extents are
allocated for file allocation. A file consists of one or more
extents.

Silberschatz, Galvin and Gagne 200212.18Operating System Concepts

Linked Allocation

■ Each file is a linked list of disk blocks: blocks may be
scattered anywhere on the disk.

pointerblock =

Silberschatz, Galvin and Gagne 200212.19Operating System Concepts

Linked Allocation (Cont.)

■ Simple – need only starting address
■ Free-space management system – no waste of space
■ No random access
■ Mapping

Block to be accessed is the Qth block in the linked chain
of blocks representing the file.
Displacement into block = R + 1

File-allocation table (FAT) – disk-space allocation used by
MS-DOS and OS/2.

LA/511
Q

R

Silberschatz, Galvin and Gagne 200212.20Operating System Concepts

Linked Allocation

Silberschatz, Galvin and Gagne 200212.21Operating System Concepts

File-Allocation Table

Silberschatz, Galvin and Gagne 200212.22Operating System Concepts

Indexed Allocation

■ Brings all pointers together into the index block.
■ Logical view.

index table

Silberschatz, Galvin and Gagne 200212.23Operating System Concepts

Example of Indexed Allocation

Silberschatz, Galvin and Gagne 200212.24Operating System Concepts

Indexed Allocation (Cont.)

■ Need index table
■ Random access
■ Dynamic access without external fragmentation, but have

overhead of index block.
■ Mapping from logical to physical in a file of maximum size

of 256K words and block size of 512 words. We need
only 1 block for index table.

LA/512
Q

R
Q = displacement into index table
R = displacement into block

Silberschatz, Galvin and Gagne 200212.25Operating System Concepts

Indexed Allocation – Mapping (Cont.)

■ Mapping from logical to physical in a file of unbounded
length (block size of 512 words).

■ Linked scheme – Link blocks of index table (no limit on
size).

LA / (512 x 511)
Q1

R1

Q1 = block of index table
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

Silberschatz, Galvin and Gagne 200212.26Operating System Concepts

Indexed Allocation – Mapping (Cont.)

■ Two-level index (maximum file size is 5123)

LA / (512 x 512)
Q1

R1

Q1 = displacement into outer-index
R1 is used as follows:

R1 / 512
Q2

R2

Q2 = displacement into block of index table
R2 displacement into block of file:

Silberschatz, Galvin and Gagne 200212.27Operating System Concepts

Indexed Allocation – Mapping (Cont.)

Μ

outer-index

index table file

Silberschatz, Galvin and Gagne 200212.28Operating System Concepts

Combined Scheme: UNIX (4K bytes per block)

Silberschatz, Galvin and Gagne 200212.29Operating System Concepts

Hierarchical Directory (Unix)

■ Tree
■ Entry:

✦ name
✦ inode number (try “ls –I” or “ls –iad .”)

■ example:
/usr/bob/mbox

inode name

Claypool Figure

Silberschatz, Galvin and Gagne 200212.30Operating System Concepts

Unix Directory Example

1 .

1 ..

4 bin

7 dev

14 lib

9 etc

6 usr

8 tmp

132

Root Directory

Looking up
usr gives
I-node 6

6 .

1 ..

26 bob

17 jeff

14 sue

51 sam

29 mark

Block 132

Looking up
bob gives
I-node 26

26 .

6 ..

12 grants

81 books

60 mbox

17 Linux

Aha!
I-node 60

has contents
of mbox

I-node 6

406

I-node 26

Relevant
data (/usr)

is in
block 132

Block 406

/usr/bob is
in block 406

Claypool Figure

Silberschatz, Galvin and Gagne 200212.31Operating System Concepts

Unix Disk LayoutUnix Disk LayoutUnix Disk LayoutUnix Disk Layout

Boot Sector

Superblocks

i-nodes

Data blocks

Superblock

•Number of inodes
•Number of blocks
•Block number of I-node bit-map
block

• first data block
•Max file size
•Magic number – identifies cpu
Architecture and executable type

Silberschatz, Galvin and Gagne 200212.32Operating System Concepts

Free-Space Management

■ Bit vector (n blocks)

…
0 1 2 n-1

bit[i] = 67
8 0 ⇒ block[i] free

1 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *
(number of 0-value words) +
offset of first 1 bit

Silberschatz, Galvin and Gagne 200212.33Operating System Concepts

Free-Space Management (Cont.)

■ Bit map requires extra space. Example:
block size = 212 bytes
disk size = 230 bytes (1 gigabyte)
n = 230/212 = 218 bits (or 32K bytes)

■ Easy to get contiguous files
■ Linked list (free list)

✦ Cannot get contiguous space easily
✦ No waste of space

■ Grouping
■ Counting

Silberschatz, Galvin and Gagne 200212.34Operating System Concepts

Free-Space Management (Cont.)

■ Need to protect:
✦ Pointer to free list
✦ Bit map

✔ Must be kept on disk
✔ Copy in memory and disk may differ.
✔ Cannot allow for block[i] to have a situation where bit[i] =

1 in memory and bit[i] = 0 on disk.
✦ Solution:

✔ Set bit[i] = 1 in disk.
✔ Allocate block[i]
✔ Set bit[i] = 1 in memory

Silberschatz, Galvin and Gagne 200212.35Operating System Concepts

Linux File System {Chapter 20}

■ To the user, Linux’s file system appears as a hierarchical
directory tree obeying UNIX semantics.

■ Internally, the kernel hides implementation details and
manages the multiple different file systems via an
abstraction layer, that is, the virtual file system (VFS).

■ The Linux VFS is designed around object-oriented
principles and is composed of two components:

✦ A set of definitions that define what a file object is allowed to
look like

✔ The inode-object and the file-object structures represent
individual files

✔ the file system object represents an entire file system
✦ A layer of software to manipulate those objects.

Silberschatz, Galvin and Gagne 200212.36Operating System Concepts

The Linux Ext2fs File System
■ Ext2fs uses a mechanism similar to that of BSD Fast

File System (ffs) for locating data blocks belonging to a
specific file.

■ The main differences between ext2fs and ffs concern
their disk allocation policies.

✦ In ffs, the disk is allocated to files in blocks of 8Kb, with
blocks being subdivided into fragments of 1Kb to store
small files or partially filled blocks at the end of a file.

✦ Ext2fs does not use fragments; it performs its allocations
in smaller units. The default block size on ext2fs is 1Kb,
although 2Kb and 4Kb blocks are also supported.

✦ Ext2fs uses allocation policies designed to place logically
adjacent blocks of a file into physically adjacent blocks on
disk, so that it can submit an I/O request for several disk
blocks as a single operation.

Silberschatz, Galvin and Gagne 200212.37Operating System Concepts

Ext2fs Block-Allocation Policies

•Uses bitmap
of free blocks

•Looks for free
byte first

•Upon finding byte
it backs up to
avoid small holes.

• If no free byte,
looks for bit

• It uses scattered
allocation instead.

Silberschatz, Galvin and Gagne 200212.38Operating System Concepts

Linked Free Space List on Disk

Silberschatz, Galvin and Gagne 200212.39Operating System Concepts

Efficiency and Performance

■ Efficiency dependent on:
✦ disk allocation and directory algorithms
✦ types of data kept in file’s directory entry

■ Performance
✦ disk cache – separate section of main memory for frequently

used blocks
✦ free-behind and read-ahead – techniques to optimize

sequential access
✦ improve PC performance by dedicating section of memory

as virtual disk, or RAM disk.

Silberschatz, Galvin and Gagne 200212.40Operating System Concepts

Page Cache

■ A page cache caches pages rather than disk blocks
using virtual memory techniques.

■ Memory-mapped I/O uses a page cache.

■ Routine I/O through the file system uses the buffer (disk)
cache.

■ This leads to the following figure.

Silberschatz, Galvin and Gagne 200212.41Operating System Concepts

I/O Without a Unified Buffer Cache

Silberschatz, Galvin and Gagne 200212.42Operating System Concepts

Unified Buffer Cache

■ A unified buffer cache uses the same page cache to
cache both memory-mapped pages and ordinary file
system I/O.

Silberschatz, Galvin and Gagne 200212.43Operating System Concepts

I/O Using a Unified Buffer Cache

Silberschatz, Galvin and Gagne 200212.44Operating System Concepts

Various Disk-Caching Locations

Silberschatz, Galvin and Gagne 200212.45Operating System Concepts

Recovery

■ Consistency checking – compares data in directory
structure with data blocks on disk, and tries to fix
inconsistencies.

■ Use system programs to back up data from disk to
another storage device (floppy disk, magnetic tape).

■ Recover lost file or disk by restoring data from backup.

Silberschatz, Galvin and Gagne 200212.46Operating System Concepts

Log Structured File Systems

■ Log structured (or journaling) file systems record each
update to the file system as a transaction.

■ All transactions are written to a log. A transaction is
considered committed once it is written to the log.
However, the file system may not yet be updated.

■ The transactions in the log are asynchronously written to
the file system. When the file system is modified, the
transaction is removed from the log.

■ If the file system crashes, all remaining transactions in the
log must still be performed.

Silberschatz, Galvin and Gagne 200212.47Operating System Concepts

The Sun Network File System (NFS)

■ An implementation and a specification of a software
system for accessing remote files across LANs (or
WANs).

■ The implementation is part of the Solaris and SunOS
operating systems running on Sun workstations using an
unreliable datagram protocol (UDP/IP protocol and
Ethernet.

Silberschatz, Galvin and Gagne 200212.48Operating System Concepts

NFS (Cont.)

■ Interconnected workstations viewed as a set of
independent machines with independent file systems,
which allows sharing among these file systems in a
transparent manner.

✦ A remote directory is mounted over a local file system
directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory.

✦ Specification of the remote directory for the mount operation
is nontransparent; the host name of the remote directory
has to be provided. Files in the remote directory can then
be accessed in a transparent manner.

✦ Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory.

Silberschatz, Galvin and Gagne 200212.49Operating System Concepts

NFS (Cont.)

■ NFS is designed to operate in a heterogeneous
environment of different machines, operating systems,
and network architectures; the NFS specifications
independent of these media.

■ This independence is achieved through the use of RPC
primitives built on top of an External Data Representation
(XDR) protocol used between two implementation-
independent interfaces.

■ The NFS specification distinguishes between the services
provided by a mount mechanism and the actual remote-
file-access services.

Silberschatz, Galvin and Gagne 200212.50Operating System Concepts

Three Independent File Systems

Mount S1:/usr/shared over U:/usr/local

Cascaded Mount S2:/usr/dir2 over U:/usr/local/dir1

Silberschatz, Galvin and Gagne 200212.51Operating System Concepts

Mounting in NFS

Mounts Cascading mounts

Silberschatz, Galvin and Gagne 200212.52Operating System Concepts

NFS Mount Protocol
■ Establishes initial logical connection between server and

client.
■ Mount operation includes name of remote directory to be

mounted and name of server machine storing it.
✦ Mount request is mapped to corresponding RPC and forwarded

to mount server running on server machine.
✦ Export list – specifies local file systems that server exports for

mounting, along with names of machines that are permitted to
mount them.

■ Following a mount request that conforms to its export list,
the server returns a file handle—a key for further accesses.

■ File handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file
system.

■ The mount operation changes only the user’s view and does
not affect the server side.

Silberschatz, Galvin and Gagne 200212.53Operating System Concepts

NFS Protocol

■ Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:

✦ searching for a file within a directory
✦ reading a set of directory entries
✦ manipulating links and directories
✦ accessing file attributes
✦ reading and writing files

■ NFS servers are stateless; each request has to provide a full set
of arguments.

■ Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).

■ The NFS protocol does not provide concurrency-control
mechanisms.

Silberschatz, Galvin and Gagne 200212.54Operating System Concepts

Three Major Layers of NFS Architecture

■ UNIX file-system interface (based on the open, read,
write, and close calls, and file descriptors).

■ Virtual File System (VFS) layer – distinguishes local files
from remote ones, and local files are further distinguished
according to their file-system types.

✦ The VFS activates file-system-specific operations to handle
local requests according to their file-system types.

✦ Calls the NFS protocol procedures for remote requests.

■ NFS service layer – bottom layer of the architecture;
implements the NFS protocol.

Silberschatz, Galvin and Gagne 200212.55Operating System Concepts

Schematic View of NFS Architecture

Silberschatz, Galvin and Gagne 200212.56Operating System Concepts

NFS Path-Name Translation

■ Performed by breaking the path into component names
and performing a separate NFS lookup call for every pair
of component name and directory vnode.

■ To make lookup faster, a directory name lookup cache on
the client’s side holds the vnodes for remote directory
names.

Silberschatz, Galvin and Gagne 200212.57Operating System Concepts

NFS Remote Operations

■ Nearly one-to-one correspondence between regular UNIX
system calls and the NFS protocol RPCs (except opening and
closing files).

■ NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance.

■ File-blocks cache – when a file is opened, the kernel checks
with the remote server whether to fetch or revalidate the cached
attributes. Cached file blocks are used only if the corresponding
cached attributes are up to date.

■ File-attribute cache – the attribute cache is updated whenever
new attributes arrive from the server.

■ Clients do not free delayed-write blocks until the server confirms
that the data have been written to disk.

