
1

Synchronization
Part 1

REK’s adaptation of  Claypool’s 
adaptation of
Tanenbaum’s

Distributed Systems
Chapter 5



Distributed Computing Systems 2

Outline 

! Clock SynchronizationClock SynchronizationClock SynchronizationClock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed Transactions
! Concurrency Control



Distributed Computing Systems 3

Clock Synchronization
make example

! When each machine has its own clock, an event 
that occurred after another event may 
nevertheless be assigned an earlier time.

• Same holds when using NFS mount
• Can all clocks in a distributed system be synchronized?
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Physical Clocks

! It is impossible to guarantee that crystals in different 
computers all run at exactly the same frequency. This 
difference in time values is clock skewclock skewclock skewclock skew.

! “Exact” time was computed by astronomers
! The difference between two transits of the sun is termed a 

solar day.solar day.solar day.solar day. Divide a solar day by 24*60*60 yields a solar solar solar solar 
second.second.second.second.

! However, the earth is slowing! (35 days less in a year 
over 300 million years)

! There are also short-term variations caused by 
turbulence deep in the earth’s core.
! A large number of days (n) (n) (n) (n) were used used to the average 

day length, then dividing by 86,400 to determine the mean mean mean mean 
solar secondsolar secondsolar secondsolar second....



Distributed Computing Systems 5

Physical Clocks 

Computation of the mean solar day.
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Physical Clocks

! Physicists take over from astronomers and count 
the transitions of cesium 133 atom
! 9,192,631,770 cesium transitions == 1 solar 

second
! 50 International labs have cesium 133 clocks.
! The Bureau Internationale de l’Heure (BIH) 

averages reported clock ticks to produce the 
International Atomic Time (International Atomic Time (International Atomic Time (International Atomic Time (TAITAITAITAI))))....

! The TAI is mean number of ticks of cesium 133 
clocks since midnight on January 1, 1958 divided 
by 9,192,631,770 .
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Physical Clocks

! To adjust for lengthening of mean solar day, 
leap secondsleap secondsleap secondsleap seconds are used to translate TAI into 
Universal Coordinated Time (Universal Coordinated Time (Universal Coordinated Time (Universal Coordinated Time (UTCUTCUTCUTC))))....

! UTC is broadcast by NIST from Fort Collins, 
Colorado over shortwave radio station WWV. 
WWV broadcasts a short pulses at the start 
of each UTC second. [accuracy 10 msec.]

! GEOS (Geostationary Environment 
Operational Satellite) also offer UTC service. 
[accuracy 0.5 msec.]
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Clock Synchronization Algorithms

! Computer timers go off H times/sec, and increment the count of ticks 
(interrupts) since an agreed upon time in the past.

! This clock value is C.
! Using UTC time, the value of clock on machine p is Cp(t).
! For a perfect time, Cp(t) = t and dC/dt = 1.
! For an ideal timer,  H =60, should generate 216,000 ticks per hour.
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Clock Synchronization 
Algorithms

! But typical errors, 10–5, so the range of ticks per 
second will vary from 215,998 to 216,002.

! Manufacturer specs can give you the maximum drift 
rate (ρρρρ).

! Every ∆∆∆∆t seconds, the worst case drift between two 
clocks will be at most 2ρ∆ρ∆ρ∆ρ∆t.

! To guarantee two clocks never differ by more than 
δδδδ, the clocks must re-synchronize every δδδδ/2ρρρρ seconds 
using one of the various clock synchronization 
algorithms.
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! Centralized Algorithms
! Cristian’s Algorithm (1989)

! Berkeley Algorithm (1989)

! Decentralized Algorithms
! Averaging Algorithms (e.g. NTP)

! Multiple External Time Sources

Clock Synchronization Algorithms
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Cristian's Algorithm

! Assume one machine (the time server) has 
a WWV receiver and all other machines are 
to stay synchronized with it.

! Every δδδδ/2ρρρρ seconds, each machine 
sends a message to the time server 
asking for the current time.

! Time server responds with message 
containing current time, CCCCUTCUTCUTCUTC.
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Cristian's Algorithm

Getting the current time from a time server
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Cristian's Algorithm

! A major problem – the client clock is 
fast " arriving value of CCCCUTCUTCUTCUTC will be 
smaller than client’s current time, 
C.
! What to do?

! One needs to gradually slow down client 
clock by adding less time per tick.
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Cristian’s Algorithm

! Minor problem – the one-way delay from 
the server to client is “significant” and 
may vary considerably. 
! What to do?

! Measure this delay and add it to CUTC.
! The best estimate of delay is (T(T(T(T1111 –––– TTTT0000)/2)/2)/2)/2.

! In cases when TTTT1111 –––– TTTT0000 is above a  threshold, 
then ignore the measurement. {outliers}

! Can subtract off IIII (the server interrupt 
handling time).

! Can use average delay measurement or 
relative latency (shortest recorded delay).
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The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values.

b) The machines answer and the time daemon computes the average.

c) The time daemon tells everyone how to adjust their clock.
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Averaging Algorithms

! Every R seconds, each machine 
broadcasts its current time.

! The local machine collects all other 
broadcast time samples during some 
time interval, S.

! The simple algorithmThe simple algorithmThe simple algorithmThe simple algorithm:: the new local 
time is set as the average of the value 
received from all other machines.
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Averaging Algorithms

! A slightly more sophisticated algorithmA slightly more sophisticated algorithmA slightly more sophisticated algorithmA slightly more sophisticated algorithm :: Discard 
the m highest and m lowest to reduce the effect of a 
set of faulty clocks.

! Another improved algorithmAnother improved algorithmAnother improved algorithmAnother improved algorithm :: Correct each 
message by adding to the received time an estimate 
of the propagation time from the ith source.
! extra probe messages are needed to use this 

scheme.
! One of the most widely used algorithms in the 

Internet is the Network Time Protocol (NTP). Network Time Protocol (NTP). Network Time Protocol (NTP). Network Time Protocol (NTP). 
! Achieves worldwide accuracy in the range of 1-50 

msec.
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Logical Clocks

! For a certain class of algorithms, it is 
the internal consistency of the clocks 
that matters. The convention in these 
algorithms is to speak of logical clocks.logical clocks.logical clocks.logical clocks.

! Lamport showed clock synchronization 
need not be absolute. What is 
important is that all processes agree 
on the order in which events occur.
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Lamport Timestamps [1978]

! Lamport defined a relation ”happens 
before”.  a # b ‘a happens before b’.

! Happens before is observable in two 
situations:

1. If a and b are events in the same process, 
and a occurs before b, then a # b is true.

2. If a is the event of a message being sent 
by one process, and b is the event of the 
message being received by another 
process, then a # b is also true.
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Lamport Timestamps

a) Each processes with own clock with different rates.
b) Lamport's algorithm corrects the clocks.
c) Can add machine ID to break ties

(impossible)



Distributed Computing Systems 23

Example: Totally-Ordered Multicasting

! San Fran customer adds $100, NY bank adds 1% interest
! San Fran will have $1,111 and NY will have $1,110

! Updating a replicated database and leaving it in an 
inconsistent state.

! Can use Lamport’s to totally order

(San Francisco) (New York)

(+$100) (+1%)
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Totally-Ordered Multicast

! A multicast operation by which all 
messages are delivered in the same order 
to each receiver.

! Lamport Details:
! Each message is timestamped with the 

current logical time of its sender.
! Multicast messages are conceptually sent to 

the sender.
! Assume all messages sent by one sender are 

received in the order they were sent and that 
no messages are lost.
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Totally-Ordered Multicast

! Lamport Details (cont):
! Receiving process puts a message into a local 

queue ordered according to timestamp.

! The receiver multicasts an ACK to all other 
processes.

! Key Point from Lamport: the timestamp of the 
received message is lower than the timestamp 
of the ACK.

! All processes will eventually have the same copy 
of the local queue # consistent global ordering.


