
1

Synchronization
Part 1

REK’s adaptation of Claypool’s
adaptation of
Tanenbaum’s

Distributed Systems
Chapter 5

Distributed Computing Systems 2

Outline

! Clock SynchronizationClock SynchronizationClock SynchronizationClock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed Transactions
! Concurrency Control

Distributed Computing Systems 3

Clock Synchronization
make example

! When each machine has its own clock, an event
that occurred after another event may
nevertheless be assigned an earlier time.

• Same holds when using NFS mount
• Can all clocks in a distributed system be synchronized?

Distributed Computing Systems 4

Physical Clocks

! It is impossible to guarantee that crystals in different
computers all run at exactly the same frequency. This
difference in time values is clock skewclock skewclock skewclock skew.

! “Exact” time was computed by astronomers
! The difference between two transits of the sun is termed a

solar day.solar day.solar day.solar day. Divide a solar day by 24*60*60 yields a solar solar solar solar
second.second.second.second.

! However, the earth is slowing! (35 days less in a year
over 300 million years)

! There are also short-term variations caused by
turbulence deep in the earth’s core.
! A large number of days (n) (n) (n) (n) were used used to the average

day length, then dividing by 86,400 to determine the mean mean mean mean
solar secondsolar secondsolar secondsolar second....

Distributed Computing Systems 5

Physical Clocks

Computation of the mean solar day.

Distributed Computing Systems 6

Physical Clocks

! Physicists take over from astronomers and count
the transitions of cesium 133 atom
! 9,192,631,770 cesium transitions == 1 solar

second
! 50 International labs have cesium 133 clocks.
! The Bureau Internationale de l’Heure (BIH)

averages reported clock ticks to produce the
International Atomic Time (International Atomic Time (International Atomic Time (International Atomic Time (TAITAITAITAI))))....

! The TAI is mean number of ticks of cesium 133
clocks since midnight on January 1, 1958 divided
by 9,192,631,770 .

Distributed Computing Systems 7

Physical Clocks

! To adjust for lengthening of mean solar day,
leap secondsleap secondsleap secondsleap seconds are used to translate TAI into
Universal Coordinated Time (Universal Coordinated Time (Universal Coordinated Time (Universal Coordinated Time (UTCUTCUTCUTC))))....

! UTC is broadcast by NIST from Fort Collins,
Colorado over shortwave radio station WWV.
WWV broadcasts a short pulses at the start
of each UTC second. [accuracy 10 msec.]

! GEOS (Geostationary Environment
Operational Satellite) also offer UTC service.
[accuracy 0.5 msec.]

Distributed Computing Systems 8

Outline

! Clock Synchronization
! Clock Synchronization AlgorithmsClock Synchronization AlgorithmsClock Synchronization AlgorithmsClock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed Transactions
! Concurrency Control

Distributed Computing Systems 9

Clock Synchronization Algorithms

! Computer timers go off H times/sec, and increment the count of ticks
(interrupts) since an agreed upon time in the past.

! This clock value is C.
! Using UTC time, the value of clock on machine p is Cp(t).
! For a perfect time, Cp(t) = t and dC/dt = 1.
! For an ideal timer, H =60, should generate 216,000 ticks per hour.

Distributed Computing Systems 10

Clock Synchronization
Algorithms

! But typical errors, 10–5, so the range of ticks per
second will vary from 215,998 to 216,002.

! Manufacturer specs can give you the maximum drift
rate (ρρρρ).

! Every ∆∆∆∆t seconds, the worst case drift between two
clocks will be at most 2ρ∆ρ∆ρ∆ρ∆t.

! To guarantee two clocks never differ by more than
δδδδ, the clocks must re-synchronize every δδδδ/2ρρρρ seconds
using one of the various clock synchronization
algorithms.

Distributed Computing Systems 11

! Centralized Algorithms
! Cristian’s Algorithm (1989)

! Berkeley Algorithm (1989)

! Decentralized Algorithms
! Averaging Algorithms (e.g. NTP)

! Multiple External Time Sources

Clock Synchronization Algorithms

Distributed Computing Systems 12

Cristian's Algorithm

! Assume one machine (the time server) has
a WWV receiver and all other machines are
to stay synchronized with it.

! Every δδδδ/2ρρρρ seconds, each machine
sends a message to the time server
asking for the current time.

! Time server responds with message
containing current time, CCCCUTCUTCUTCUTC.

Distributed Computing Systems 13

Cristian's Algorithm

Getting the current time from a time server

Distributed Computing Systems 14

Cristian's Algorithm

! A major problem – the client clock is
fast " arriving value of CCCCUTCUTCUTCUTC will be
smaller than client’s current time,
C.
! What to do?

! One needs to gradually slow down client
clock by adding less time per tick.

Distributed Computing Systems 15

Cristian’s Algorithm

! Minor problem – the one-way delay from
the server to client is “significant” and
may vary considerably.
! What to do?

! Measure this delay and add it to CUTC.
! The best estimate of delay is (T(T(T(T1111 –––– TTTT0000)/2)/2)/2)/2.

! In cases when TTTT1111 –––– TTTT0000 is above a threshold,
then ignore the measurement. {outliers}

! Can subtract off IIII (the server interrupt
handling time).

! Can use average delay measurement or
relative latency (shortest recorded delay).

Distributed Computing Systems 16

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values.

b) The machines answer and the time daemon computes the average.

c) The time daemon tells everyone how to adjust their clock.

Distributed Computing Systems 17

Averaging Algorithms

! Every R seconds, each machine
broadcasts its current time.

! The local machine collects all other
broadcast time samples during some
time interval, S.

! The simple algorithmThe simple algorithmThe simple algorithmThe simple algorithm:: the new local
time is set as the average of the value
received from all other machines.

Distributed Computing Systems 18

Averaging Algorithms

! A slightly more sophisticated algorithmA slightly more sophisticated algorithmA slightly more sophisticated algorithmA slightly more sophisticated algorithm :: Discard
the m highest and m lowest to reduce the effect of a
set of faulty clocks.

! Another improved algorithmAnother improved algorithmAnother improved algorithmAnother improved algorithm :: Correct each
message by adding to the received time an estimate
of the propagation time from the ith source.
! extra probe messages are needed to use this

scheme.
! One of the most widely used algorithms in the

Internet is the Network Time Protocol (NTP). Network Time Protocol (NTP). Network Time Protocol (NTP). Network Time Protocol (NTP).
! Achieves worldwide accuracy in the range of 1-50

msec.

Distributed Computing Systems 19

Outline

! Clock Synchronization
! Clock Synchronization Algorithms
! Logical ClocksLogical ClocksLogical ClocksLogical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed Transactions
! Concurrency Control

Distributed Computing Systems 20

Logical Clocks

! For a certain class of algorithms, it is
the internal consistency of the clocks
that matters. The convention in these
algorithms is to speak of logical clocks.logical clocks.logical clocks.logical clocks.

! Lamport showed clock synchronization
need not be absolute. What is
important is that all processes agree
on the order in which events occur.

Distributed Computing Systems 21

Lamport Timestamps [1978]

! Lamport defined a relation ”happens
before”. a # b ‘a happens before b’.

! Happens before is observable in two
situations:

1. If a and b are events in the same process,
and a occurs before b, then a # b is true.

2. If a is the event of a message being sent
by one process, and b is the event of the
message being received by another
process, then a # b is also true.

Distributed Computing Systems 22

Lamport Timestamps

a) Each processes with own clock with different rates.
b) Lamport's algorithm corrects the clocks.
c) Can add machine ID to break ties

(impossible)

Distributed Computing Systems 23

Example: Totally-Ordered Multicasting

! San Fran customer adds $100, NY bank adds 1% interest
! San Fran will have $1,111 and NY will have $1,110

! Updating a replicated database and leaving it in an
inconsistent state.

! Can use Lamport’s to totally order

(San Francisco) (New York)

(+$100) (+1%)

Distributed Computing Systems 24

Totally-Ordered Multicast

! A multicast operation by which all
messages are delivered in the same order
to each receiver.

! Lamport Details:
! Each message is timestamped with the

current logical time of its sender.
! Multicast messages are conceptually sent to

the sender.
! Assume all messages sent by one sender are

received in the order they were sent and that
no messages are lost.

Distributed Computing Systems 25

Totally-Ordered Multicast

! Lamport Details (cont):
! Receiving process puts a message into a local

queue ordered according to timestamp.

! The receiver multicasts an ACK to all other
processes.

! Key Point from Lamport: the timestamp of the
received message is lower than the timestamp
of the ACK.

! All processes will eventually have the same copy
of the local queue # consistent global ordering.

