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Election Algorithms

! Many distributed algorithms such as 
mutual exclusion and deadlock detection 
require a coordinator processcoordinator processcoordinator processcoordinator process.

! When the coordinator process fails, the 
distributed group of processes must 
execute an election algorithmelection algorithmelection algorithmelection algorithm to determine 
a new coordinator process.

! These algorithms will assume that each 
active process has a unique prioritypriorityprioritypriority id.id.id.id.
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The Bully Algorithm

When any process, P, notices that the 
coordinator is no longer responding it 
initiates an election:

1. P sends an election message to all 
processes with higher id numbers.

2. If no one responds, P wins the election 
and becomes coordinator.

3. If a higher process responds, it takes 
over. Process P’s job is done.
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The Bully Algorithm

! At any moment, a process can receive 
an election election election election message from one of its 
lower-numbered colleagues.

! The receiver sends an OK back to the 
sender and conducts its own election.

! Eventually only the bully process
remains. The bully announces victory 
to all processes in the distributed 
group.
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Bully Algorithm Example 

! Process 4 notices 7 down.

! Process 4 holds an election.

! Process 5 and 6 respond, telling 4 to stop.

! Now 5 and 6 each hold an election.
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Bully Algorithm Example

Process 6 tells process 5 to stop.

! Process 6 (the bully) wins and tells everyone.

! If processes 7 comes up, starts elections again.
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A Ring Algorithm

! Assume the processes are logically 
ordered in a ring {implies a successor {implies a successor {implies a successor {implies a successor 
pointer and an active process list}pointer and an active process list}pointer and an active process list}pointer and an active process list}
that is unidirectional.

When any process, P, notices that the 
coordinator is no longer responding it 
initiates an election:

1.  P sends message containing P’s 
process id to the next available
successor.
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A Ring Algorithm

2. At each active process, the receiving process 
adds its process number to the list of 
processes in the message and forwards it to 
its successor.

3. Eventually, the message gets back to the 
sender.

4. The initial sender sends out a second message 
letting everyone know who the coordinator is 
{the process with the highest number} and 
indicating the current members of the active 
list of processes. 
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A Ring Algorithm

• Even if two ELECTIONS start at once, everyone 
will pick the same leader.
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Mutual Exclusion

! To guarantee consistency among 
distributed processes that are 
accessing shared memory, it is 
necessary to provide mutual mutual mutual mutual 
exclusion exclusion exclusion exclusion when accessing a critical 
section.

! Assume n processes.
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A Centralized Algorithm
for Mutual Exclusion

Assume a coordinator has been elected.
• A process sends a message to the coordinator requesting 

permission to enter a critical section.  If no other process is in 
the critical section, permission is granted.

• If another process then asks permission to enter the same 
critical region, the coordinator does not reply  (Or, it sends 
“permission denied”) and queues the request.

• When a process exits the critical section, it sends a message to
the coordinator.

• The coordinator takes first entry off the queue and sends that 
process a message granting permission to enter the critical 
section.
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A Centralized Algorithm
for Mutual Exclusion
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A Distributed Algorithm
for Mutual Exclusion

Ricart and Agrawala algorithm (1981) assumes there 
is a mechanism for “totally ordering of all events” 
in the system (e.g. Lamport’s algorithm) and a 
reliable message system.

1. A process wanting to enter critical sections (cs) 
sends a message with (cs name, process id, 
current time) to all processes (including itself).

2. When a process receives a cs request from 
another process, it reacts based on its current 
state with respect to the cs requested. There 
are three possible cases:
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A Distributed Algorithm
for Mutual Exclusion (cont.)

a) If the receiver is not in the cs and it does not 
want to enter the cs, it sends an OK message to 
the sender.

b) If the receiver is in the cs, it does not reply and 
queues the request.

c) If the receiver wants to enter the cs but has not 
yet, it compares the timestamp of the incoming 
message with the timestamp of its message
sent to everyone. {The lowest timestamp wins.} 
If the incoming timestamp is lower, the 
receiver sends an OK message to the sender. If 
its own timestamp is lower, the receiver queues 
the request and sends nothing. 
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A Distributed Algorithm
for Mutual Exclusion (cont.)

! After a process sends out a request 
to enter a cs, it waits for an OK 
from all the other processes. When 
all are received, it enters the cs.

! Upon exiting cs, it sends OK 
messages to all processes on its 
queue for that cs and deletes them 
from the queue.
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A Distributed Algorithm
for Mutual Exclusion
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A Token Ring Algorithm

a) An unordered group of processes on a 
network.  

b) A logical ring constructed in software.
• A process must have token to enter.
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Mutual Exclusion Algorithm 
Comparison

! Centralized is the most efficient.
! Token ring efficient when many want to 

use critical region.

Lost token, 
process crash0 to n – 11 to ∞Token ring

Process crash2 ( n – 1 )2 ( n – 1 )Distributed

Coordinator 
crash23Centralized

ProblemsDelay before entry 
(in message times)

Messages per 
entry/exitAlgorithm



Distributed Computing Systems 21

Outline – Part 2

! Clock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed TransactionsDistributed TransactionsDistributed TransactionsDistributed Transactions
! Concurrency Control



Distributed Computing Systems 22

The Transaction Model

! The transaction model ensures mutual 
exclusion and supports atomic operations.

! Consider using PC to:
! Withdraw $100 from account 1

! Deposit $100 to account 2

! Interruption of the transaction is the 
problem. In distributed systems, this 
happens when a connection is broken.
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The Transaction Model

! If a transaction involves multiple actions 
or operates on multiple resources in a 
sequence, the transaction by definition is 
a single, atomic action. Namely,
! It all happens, or none of it happens.

! If process backs out, the state of the 
resources is as if the transaction never 
started. {This may require a rollback rollback rollback rollback 
mechanism.mechanism.mechanism.mechanism.}
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Transaction Primitives

The primitivesprimitivesprimitivesprimitives may be system calls, libraries or statements in 
a language (Sequential Query Language or SQL).

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive
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Example: Reserving Flight 
from White Plains to Nairobi 

a) Transaction to reserve three flights commits.
b) Transaction aborts when third flight is 

unavailable.

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)
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Transaction Properties [ACID]

1) Atomic:  transactions are indivisible to 
the outside world.

2) Consistent: system invariants are not 
violated.

3) Isolated: concurrent transactions do not 
interfere with each other. {serializable}

4) Durability: once a transaction commits, 
the changes are permanent. {requires a 
distributed commit mechanism}
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Classification of Transactions

! Flat Transactions {satisfy ACID properties}
! Limited – partial results cannot be committed.
! Example: what if want to keep first part of flight 

reservation?  If abort and then restart, those 
might be gone.

! Example: what if want to move a Web page.  All 
links pointing to it would need to be updated. 
Requiring a flat transaction could lock resources 
for a long time.

! Also Distributed and Nested Transactions
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Nested vs. Distributed Transactions

! Nested transaction gives you a hierarchy

! Commit mechanism is complicated with nesting.

! Distributed transaction is “flat” but across 
distributed data (example: JFK and Nairobi dbase)
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Private Workspace 

! File system with transaction across 
multiple files
! Normally, updates seen + No way to undo.

! Private Workspace " need to copy files.  

! Only update Public Workspace when done.

! If abort transaction, remove private copy.

! But copy can be expensive! 
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Private Workspace

a) Original file index (descriptor) and disk blocks
b) Copy descriptor only.  Copy blocks only when written.

• Modified block 0 and appended block 3 {shadow blocks}
c) Replace original file (new blocks plus descriptor) after commit.
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Writeahead Log

b) – d) log records old and new values before each 
statement is executed.

! If transaction commits, nothing to do.

! If transaction is aborted, use log to rollback.

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)   

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a) 
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Concurrency Control 

General organization of managers for handling 
transactions. 

Allow parallel execution

(ensure
atomic)

(ensure
serial)
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Concurrency Control 

! General organization of 
managers for handling 
distributed transactions.
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Serializability

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 
x + 3;

Schedule 3

Legalx = 0;  x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = 
x + 3;

Schedule 2

Legalx = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = 
x + 3

Schedule 1

Allow parallel execution, but end result as if serial

• Concurrency controller needs to manage
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Atomicity 

! Either all the operations associated 
with a program unit are executed to 
completion, or none are performed. 

! Ensuring atomicity in a distributed 
system requires a local transaction 
coordinator, which is responsible for 
the following:

Silberschatz Slide
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Atomicity 

! Starting the execution of the transaction.

! Breaking the transaction into a number of 
subtransactions, and distribution these 
subtransactions to the appropriate sites for 
execution. 

! Coordinating the termination of the transaction, 
which may result in the transaction being 
committedcommittedcommittedcommitted at all sites or abortedabortedabortedaborted at all sites.

! Assume each local site maintains a log for 
recovery.

Silberschatz Slide
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Two-Phase Commit Protocol (2PC)

! Assumes fail-stop model.

! Execution of the protocol is initiated by the coordinator 
after the last step of the transaction has been reached.

! When the protocol is initiated, the transaction may still be 
executing at some of the local sites.

! The protocol involves all the local sites at which the 
transaction executed.

! Example:  Let T be a transaction initiated at site Si and let 
the transaction coordinator at Si be Ci.

Silberschatz Slide
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Phase 1:  Obtaining a Decision

! Ci adds <prepare <prepare <prepare <prepare TTTT> record> record> record> record to the log. 
! Ci sends <prepare T> message to all sites.
! When a site receives a <prepare T> message, the 

transaction manager determines if it can commit the 
transaction.
! If no:  add <no <no <no <no TTTT> record> record> record> record to the log and respond to Ci

with <abort T> message.
! If yes:

! add <ready T> record<ready T> record<ready T> record<ready T> record to the log.
! force all log records for T onto stable storage. 
! transaction manager sends <ready T> message to 

Ci.

Silberschatz Slide
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Phase 1 (Cont.)

! Coordinator collects responses
! All respond “ready”, 

decision is commit.

! At least one response is “abort”,
decision is abort. 

! At least one participant fails to 
respond within time out period,
decision is abort. 

Silberschatz Slide
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Phase 2:  Recording Decision in the 
Database

! Coordinator adds a decision record 

<abort T><abort T><abort T><abort T> or <commit T><commit T><commit T><commit T>
to its log and forces record onto stable storage.

! Once that record reaches stable storage it is 
irrevocable (even if failures occur).

! Coordinator sends a message to each 
participant informing it of the decision (commit 
or abort message).

! Participants take appropriate action locally.

Silberschatz Slide



Distributed Computing Systems 42

Two-Phase Locking

1.  When scheduler receives an 
operation oper(T,x) from the TM, it 
tests for operation conflict with any 
other operation for which it already
granted a lock. If conflict, oper(T,x) 
is delayed. No conflict " lock for x
is granted and oper(T,x) is passed to 
DM.
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Two-Phase Locking

2. The scheduler will never release a 
lock for x until DM indicates it has 
performed the operation for which 
the lock was set.

3.  Once the scheduler has released a 
lock on behalf of T, T will NOT be 
permitted to acquire another lock.



Distributed Computing Systems 44

Two-Phase Locking
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Strict Two-Phase Locking 

! Always reads value written by a committed transaction. "
This policy eliminates cascading aborts.

! Releasing locks at the end of the transaction means 
transaction is “unaware” of the release operation. 


