
1

Synchronization
Part 2

REK’s adaptation of Claypool’s
adaptation ofTanenbaum’s

Distributed Systems Chapter 5
and

Silberschatz Chapter 17

Distributed Computing Systems 2

Outline – Part 2

! Clock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election AlgorithmsElection AlgorithmsElection AlgorithmsElection Algorithms
! Mutual Exclusion
! Distributed Transactions
! Concurrency Control

Distributed Computing Systems 3

Election Algorithms

! Many distributed algorithms such as
mutual exclusion and deadlock detection
require a coordinator processcoordinator processcoordinator processcoordinator process.

! When the coordinator process fails, the
distributed group of processes must
execute an election algorithmelection algorithmelection algorithmelection algorithm to determine
a new coordinator process.

! These algorithms will assume that each
active process has a unique prioritypriorityprioritypriority id.id.id.id.

Distributed Computing Systems 4

The Bully Algorithm

When any process, P, notices that the
coordinator is no longer responding it
initiates an election:

1. P sends an election message to all
processes with higher id numbers.

2. If no one responds, P wins the election
and becomes coordinator.

3. If a higher process responds, it takes
over. Process P’s job is done.

Distributed Computing Systems 5

The Bully Algorithm

! At any moment, a process can receive
an election election election election message from one of its
lower-numbered colleagues.

! The receiver sends an OK back to the
sender and conducts its own election.

! Eventually only the bully process
remains. The bully announces victory
to all processes in the distributed
group.

Distributed Computing Systems 6

Bully Algorithm Example

! Process 4 notices 7 down.

! Process 4 holds an election.

! Process 5 and 6 respond, telling 4 to stop.

! Now 5 and 6 each hold an election.

Distributed Computing Systems 7

Bully Algorithm Example

Process 6 tells process 5 to stop.

! Process 6 (the bully) wins and tells everyone.

! If processes 7 comes up, starts elections again.

Distributed Computing Systems 8

A Ring Algorithm

! Assume the processes are logically
ordered in a ring {implies a successor {implies a successor {implies a successor {implies a successor
pointer and an active process list}pointer and an active process list}pointer and an active process list}pointer and an active process list}
that is unidirectional.

When any process, P, notices that the
coordinator is no longer responding it
initiates an election:

1. P sends message containing P’s
process id to the next available
successor.

Distributed Computing Systems 9

A Ring Algorithm

2. At each active process, the receiving process
adds its process number to the list of
processes in the message and forwards it to
its successor.

3. Eventually, the message gets back to the
sender.

4. The initial sender sends out a second message
letting everyone know who the coordinator is
{the process with the highest number} and
indicating the current members of the active
list of processes.

Distributed Computing Systems 10

A Ring Algorithm

• Even if two ELECTIONS start at once, everyone
will pick the same leader.

Distributed Computing Systems 11

Outline – Part 2

! Clock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual ExclusionMutual ExclusionMutual ExclusionMutual Exclusion
! Distributed Transactions
! Concurrency Control

Distributed Computing Systems 12

Mutual Exclusion

! To guarantee consistency among
distributed processes that are
accessing shared memory, it is
necessary to provide mutual mutual mutual mutual
exclusion exclusion exclusion exclusion when accessing a critical
section.

! Assume n processes.

Distributed Computing Systems 13

A Centralized Algorithm
for Mutual Exclusion

Assume a coordinator has been elected.
• A process sends a message to the coordinator requesting

permission to enter a critical section. If no other process is in
the critical section, permission is granted.

• If another process then asks permission to enter the same
critical region, the coordinator does not reply (Or, it sends
“permission denied”) and queues the request.

• When a process exits the critical section, it sends a message to
the coordinator.

• The coordinator takes first entry off the queue and sends that
process a message granting permission to enter the critical
section.

Distributed Computing Systems 14

A Centralized Algorithm
for Mutual Exclusion

Distributed Computing Systems 15

A Distributed Algorithm
for Mutual Exclusion

Ricart and Agrawala algorithm (1981) assumes there
is a mechanism for “totally ordering of all events”
in the system (e.g. Lamport’s algorithm) and a
reliable message system.

1. A process wanting to enter critical sections (cs)
sends a message with (cs name, process id,
current time) to all processes (including itself).

2. When a process receives a cs request from
another process, it reacts based on its current
state with respect to the cs requested. There
are three possible cases:

Distributed Computing Systems 16

A Distributed Algorithm
for Mutual Exclusion (cont.)

a) If the receiver is not in the cs and it does not
want to enter the cs, it sends an OK message to
the sender.

b) If the receiver is in the cs, it does not reply and
queues the request.

c) If the receiver wants to enter the cs but has not
yet, it compares the timestamp of the incoming
message with the timestamp of its message
sent to everyone. {The lowest timestamp wins.}
If the incoming timestamp is lower, the
receiver sends an OK message to the sender. If
its own timestamp is lower, the receiver queues
the request and sends nothing.

Distributed Computing Systems 17

A Distributed Algorithm
for Mutual Exclusion (cont.)

! After a process sends out a request
to enter a cs, it waits for an OK
from all the other processes. When
all are received, it enters the cs.

! Upon exiting cs, it sends OK
messages to all processes on its
queue for that cs and deletes them
from the queue.

Distributed Computing Systems 18

A Distributed Algorithm
for Mutual Exclusion

Distributed Computing Systems 19

A Token Ring Algorithm

a) An unordered group of processes on a
network.

b) A logical ring constructed in software.
• A process must have token to enter.

Distributed Computing Systems 20

Mutual Exclusion Algorithm
Comparison

! Centralized is the most efficient.
! Token ring efficient when many want to

use critical region.

Lost token,
process crash0 to n – 11 to ∞Token ring

Process crash2 (n – 1)2 (n – 1)Distributed

Coordinator
crash23Centralized

ProblemsDelay before entry
(in message times)

Messages per
entry/exitAlgorithm

Distributed Computing Systems 21

Outline – Part 2

! Clock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed TransactionsDistributed TransactionsDistributed TransactionsDistributed Transactions
! Concurrency Control

Distributed Computing Systems 22

The Transaction Model

! The transaction model ensures mutual
exclusion and supports atomic operations.

! Consider using PC to:
! Withdraw $100 from account 1

! Deposit $100 to account 2

! Interruption of the transaction is the
problem. In distributed systems, this
happens when a connection is broken.

Distributed Computing Systems 23

The Transaction Model

! If a transaction involves multiple actions
or operates on multiple resources in a
sequence, the transaction by definition is
a single, atomic action. Namely,
! It all happens, or none of it happens.

! If process backs out, the state of the
resources is as if the transaction never
started. {This may require a rollback rollback rollback rollback
mechanism.mechanism.mechanism.mechanism.}

Distributed Computing Systems 24

Transaction Primitives

The primitivesprimitivesprimitivesprimitives may be system calls, libraries or statements in
a language (Sequential Query Language or SQL).

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

Distributed Computing Systems 25

Example: Reserving Flight
from White Plains to Nairobi

a) Transaction to reserve three flights commits.
b) Transaction aborts when third flight is

unavailable.

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

Distributed Computing Systems 26

Transaction Properties [ACID]

1) Atomic: transactions are indivisible to
the outside world.

2) Consistent: system invariants are not
violated.

3) Isolated: concurrent transactions do not
interfere with each other. {serializable}

4) Durability: once a transaction commits,
the changes are permanent. {requires a
distributed commit mechanism}

Distributed Computing Systems 27

Classification of Transactions

! Flat Transactions {satisfy ACID properties}
! Limited – partial results cannot be committed.
! Example: what if want to keep first part of flight

reservation? If abort and then restart, those
might be gone.

! Example: what if want to move a Web page. All
links pointing to it would need to be updated.
Requiring a flat transaction could lock resources
for a long time.

! Also Distributed and Nested Transactions

Distributed Computing Systems 28

Nested vs. Distributed Transactions

! Nested transaction gives you a hierarchy

! Commit mechanism is complicated with nesting.

! Distributed transaction is “flat” but across
distributed data (example: JFK and Nairobi dbase)

Distributed Computing Systems 29

Private Workspace

! File system with transaction across
multiple files
! Normally, updates seen + No way to undo.

! Private Workspace " need to copy files.

! Only update Public Workspace when done.

! If abort transaction, remove private copy.

! But copy can be expensive!

Distributed Computing Systems 30

Private Workspace

a) Original file index (descriptor) and disk blocks
b) Copy descriptor only. Copy blocks only when written.

• Modified block 0 and appended block 3 {shadow blocks}
c) Replace original file (new blocks plus descriptor) after commit.

Distributed Computing Systems 31

Writeahead Log

b) – d) log records old and new values before each
statement is executed.

! If transaction commits, nothing to do.

! If transaction is aborted, use log to rollback.

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

Distributed Computing Systems 32

Outline – Part 2

! Clock Synchronization
! Clock Synchronization Algorithms
! Logical Clocks
! Election Algorithms
! Mutual Exclusion
! Distributed Transactions
! Concurrency ControlConcurrency ControlConcurrency ControlConcurrency Control

Distributed Computing Systems 33

Concurrency Control

General organization of managers for handling
transactions.

Allow parallel execution

(ensure
atomic)

(ensure
serial)

Distributed Computing Systems 34

Concurrency Control

! General organization of
managers for handling
distributed transactions.

Distributed Computing Systems 35

Serializability

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x =
x + 3;

Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x =
x + 3;

Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x =
x + 3

Schedule 1

Allow parallel execution, but end result as if serial

• Concurrency controller needs to manage

Distributed Computing Systems 36

Atomicity

! Either all the operations associated
with a program unit are executed to
completion, or none are performed.

! Ensuring atomicity in a distributed
system requires a local transaction
coordinator, which is responsible for
the following:

Silberschatz Slide

Distributed Computing Systems 37

Atomicity

! Starting the execution of the transaction.

! Breaking the transaction into a number of
subtransactions, and distribution these
subtransactions to the appropriate sites for
execution.

! Coordinating the termination of the transaction,
which may result in the transaction being
committedcommittedcommittedcommitted at all sites or abortedabortedabortedaborted at all sites.

! Assume each local site maintains a log for
recovery.

Silberschatz Slide

Distributed Computing Systems 38

Two-Phase Commit Protocol (2PC)

! Assumes fail-stop model.

! Execution of the protocol is initiated by the coordinator
after the last step of the transaction has been reached.

! When the protocol is initiated, the transaction may still be
executing at some of the local sites.

! The protocol involves all the local sites at which the
transaction executed.

! Example: Let T be a transaction initiated at site Si and let
the transaction coordinator at Si be Ci.

Silberschatz Slide

Distributed Computing Systems 39

Phase 1: Obtaining a Decision

! Ci adds <prepare <prepare <prepare <prepare TTTT> record> record> record> record to the log.
! Ci sends <prepare T> message to all sites.
! When a site receives a <prepare T> message, the

transaction manager determines if it can commit the
transaction.
! If no: add <no <no <no <no TTTT> record> record> record> record to the log and respond to Ci

with <abort T> message.
! If yes:

! add <ready T> record<ready T> record<ready T> record<ready T> record to the log.
! force all log records for T onto stable storage.
! transaction manager sends <ready T> message to

Ci.

Silberschatz Slide

Distributed Computing Systems 40

Phase 1 (Cont.)

! Coordinator collects responses
! All respond “ready”,

decision is commit.

! At least one response is “abort”,
decision is abort.

! At least one participant fails to
respond within time out period,
decision is abort.

Silberschatz Slide

Distributed Computing Systems 41

Phase 2: Recording Decision in the
Database

! Coordinator adds a decision record

<abort T><abort T><abort T><abort T> or <commit T><commit T><commit T><commit T>
to its log and forces record onto stable storage.

! Once that record reaches stable storage it is
irrevocable (even if failures occur).

! Coordinator sends a message to each
participant informing it of the decision (commit
or abort message).

! Participants take appropriate action locally.

Silberschatz Slide

Distributed Computing Systems 42

Two-Phase Locking

1. When scheduler receives an
operation oper(T,x) from the TM, it
tests for operation conflict with any
other operation for which it already
granted a lock. If conflict, oper(T,x)
is delayed. No conflict " lock for x
is granted and oper(T,x) is passed to
DM.

Distributed Computing Systems 43

Two-Phase Locking

2. The scheduler will never release a
lock for x until DM indicates it has
performed the operation for which
the lock was set.

3. Once the scheduler has released a
lock on behalf of T, T will NOT be
permitted to acquire another lock.

Distributed Computing Systems 44

Two-Phase Locking

Distributed Computing Systems 45

Strict Two-Phase Locking

! Always reads value written by a committed transaction. "
This policy eliminates cascading aborts.

! Releasing locks at the end of the transaction means
transaction is “unaware” of the release operation.

