(17 pts) 16.

Given the internet pictured above with a propagation speed of $150 \mathrm{~m} / \mathrm{mic}$ cosec. on the 100BASE5 LAN and a propagation speed of $\mathbf{2 0 0} \mathbf{~ m} / \mathbf{m i c r o s e c}$. on the store-forward packet-switched WAN where nodes $\mathbf{Q}, \mathbf{R}, \mathbf{A}, \mathbf{X}, \mathbf{Y}$ and \mathbf{Z} are equally spaced on the Ethernet with nodes \mathbf{Q} and \mathbf{Z} at the opposite maximum possible extreme ends.

Nodes A to E are spaced on the WAN as shown with 2 Gbps links between nodes. Assume it takes each WAN node $\mathbf{5 0}$ microsec. to look up a packet's route in its routing table and that there is a $\mathbf{1}$ bit delay for a Ethernet frame to pass through a node on the ether (excluding the sender and receiver nodes).

Assume an IP packet has $\mathbf{1 3 0 0}$ bytes and the frame header = $\mathbf{1 0 0}$ bytes and the frame trailer = $\mathbf{1 0 0}$ bytes on both the Ethernet LAN and the point-to-point WAN.
(17 pts.) 16a. How long will it take to send a frame from node \mathbf{Z} to node \mathbf{E} in the situation that when the frame arrives at node \mathbf{C} there are four frames waiting to go to node \mathbf{E} and three frames waiting to go to node \mathbf{D} ? Assume all frames are the same size and that there is no other traffic on the internet when the frame is sent.
\{To receive full or partial credit, you MUST show all your work on the next page\}
Frame size $=1300+100+100$ bytes $=1500$ bytes X $8=12,000$ bits 1.2×10^{4} bits
Delay from Z to $\mathrm{A} \quad \mathrm{D}=\mathrm{PD}+\mathrm{QD}+\mathrm{TT}+\mathrm{PT}=0+0+\mathrm{TT}+\mathrm{PT}+2$ bits of delay
TT $=\frac{1.2 \times 10^{4} \text { bits }}{----------------}=10^{8} \mathrm{Mbps} \times 10^{-4} \mathrm{sec} .=120$ microsec .
PT $=\frac{300 \text { meters }}{---------------- \text {-- }}=\quad 2$ microsec

1 bit $=1 / 10^{8} \mathrm{sec}=10^{-8} \mathrm{sec}=.01$ microsec. $\times 2=0.02$ microsec .
Delay from Z to A $\quad=\quad 122.02$ microsec

Blank Page

PT $(B C)=\frac{2000 \mathrm{~m}}{----------------- \text { microsec }}=10$ microsec
PT (CE) $=\frac{5000 \mathrm{~m}}{----------------- \text { microsec }} \mathbf{2 0 0 \mathrm { m }}=25$ microsec

Delay from A to $\mathrm{E}=3$ hops $\mathrm{x}(\mathrm{PD}+\mathrm{TT})+\mathrm{QD}+\mathrm{PT}(\mathrm{AB})+\mathrm{PT}(\mathrm{BC})+\mathrm{PT}(\mathrm{CE})$
$=3 \times(50$ microsec +6 microsec $)+24$ microsec $+(40+10+25)$ microsec
$=168$ microsec +24 microsec +75 microsec
$=267$ microsec

Delay from Z to $E=$ Delay from Y to $A+$ Delay from A to E
$=122.02$ microsec +267 microsec
$=389.02 \mathrm{microsec}$

