Question 13 A15 Mid Term Exam

$D_{A W}=D_{A E}+D_{E W}$
frame size $=1300+100+100=1500$ bytes X $8=12,000$ bits
$D_{\text {AE }}=p r o c+Q D+T T+P D$
12000 bits
TT = ------------------------ $=6 \times 10^{-6} \mathrm{sec}=6$ microsec. 2000×10^{6} bits $/ \mathrm{sec}$

15,000 m
PD $=8000+2000+5000$ = ---------------------- = 100 microsec.
$150 \mathrm{~m} /$ microsec.

$$
\begin{aligned}
\text { Proc } & =4 \text { lookups } \times 500 \text { microsec. } & =2,000 \text { microsec. } \\
\mathrm{QD} & =5 \times \mathrm{TT} & \\
\mathrm{D}_{\mathrm{AE}} & =3 \mathrm{TT}+5 \mathrm{TT}+\text { proc }+\mathrm{PD} & \\
& =8 \times 6+2000+100 \text { microsec } & =2,148 \text { microsec. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{EW}}=\text { proc }+\mathrm{QD}+\mathrm{TT}+\mathrm{PD} \\
& \text { Proc }=\text { delay when passing through node }=1 \text { microsec. } \\
& \mathrm{QD}=0 \\
& \mathrm{PD}=200 \mathrm{~m} \\
& \\
& \\
& 200 \mathrm{~m} / \text { microsec. }
\end{aligned}
$$

12000 bits

TT = --------------------- = $120 \times 10^{-6} \mathrm{sec}=120$ microsec. $100 \times 10^{6} \mathrm{bits} / \mathrm{sec}$

$$
\begin{array}{ll}
\mathrm{D}_{\mathrm{EW}}=1+0+1+120 & =122 \text { microsec } \\
\mathrm{D}_{\mathrm{AW}}=\mathrm{D}_{\mathrm{AE}}+\mathrm{D}_{\mathrm{EW}} & \\
\mathrm{D}_{\mathrm{AW}}=2,148+122 & =2,270 \text { microsec. }
\end{array}
$$

