(18 pts.) 14. Given the internet pictured below with a propagation speed of $200 \mathrm{~m} /$ microsec on the packet-switched WAN and $150 \mathrm{~m} /$ microsec on the counter-clockwise 10 Mbps ring LAN where the five nodes (A, B, C, D, E) are equidistantly spaced 300 meters apart. Assume that every frame on the ring incurs a one-bit delay when it passes through each node repeater.

Nodes 1-4, 7,8 and E are equidistantly spaced 6 km apart on the WAN with 1 Gbps links between nodes. Node E is the only WAN node with a processing time of $\mathbf{1 0 0}$ microsec.

Assuming one packet fits exactly into one frame payload and given the following frame specifications:
Frame payload $=1170$ bytes
Frame header $=40$ bytes Frame trailer $=40$ bytes
a. How long will it take to send a packet from node D to node 1 in the situation that when the packet arrives at node 2 there are three packets waiting to go to node 1 and two packets waiting to go to node 7? Assume no other queuing on the WAN and the transmitting node has the token.
\{List any assumptions made and show ALL work to receive full and/or partial credit.\}

$$
\begin{aligned}
& D_{D 1}=D_{D E}+D_{E 1} \\
& \text { delay }=P D+Q D+T T+P T \\
& \text { one packet }=(1170+40+40) \times 8=1250 \text { bytes } \times 8=10000 \text { bits }=10^{4} \text { bits }
\end{aligned}
$$

$D_{D E} \quad$ packet from D to $E: \quad$ \{assume ring is transmitting counter-clockwise\}
$P D=Q D=0$
$\mathrm{TT}=\frac{10^{4} \text { bits }}{10^{7} \mathrm{bits} / \text { sec. }}=10^{-3}$ sec. $=0.001 \mathrm{sec} \quad=1000$ microsec.

Repeater (four counting E) use 4 (3 accepted as correct)
One bit $=1 /$ R $1 / 10^{7}$ bits/sec. $=0.0000001 \mathrm{sec} \times 4=0.4 \mathrm{microsec}$.
$=1008.4$ microsec
$\mathrm{D}_{\mathrm{E} 1}$ packet from E to 1: = $\mathrm{PD}+\mathrm{QD}+\mathrm{TT}+\mathrm{PT}$
$\mathrm{TT}=\frac{10^{4} \text { bits }}{10^{9} \mathrm{bits} / \mathrm{sec} .}=10^{-5} \mathrm{sec} .=0.00001 \mathrm{sec} \quad=\quad 10$ microsec.

$Q D=3 \times T T$	
$P D$ at node $E=100$ microsec	$=100$ microsec.
$Q D+4 T T=7 \times T T=7 \times 10$ microsec.	$=70$ microsec.
$D_{E 1}=(100+70+120$ microsec $)$	$=290$ microsec.
$D_{D 1}=D_{D E}+D_{E 1}=(1008.4+290$ microsec. $)=1,298.4$ microsec.	

