
CS3516 Computer Networks B14

 1

Program 3 {October 27, 2014} 55 points

Sending Photos to a Concurrent Photo Server
Due: Tuesday, December 16 at 4 p.m.

Introduction

The goal of this assignment is to send sets of digital photographs from multiple clients to a photograph

gallery server. The clients and server need to be designed to run on separate CCC Linux computers and

communicate at the data link layer by sending and receiving frames. Both the clients and the concurrent

server emulate three OSI layers (application/network, data link, and physical layer).

This assignment exposes the student to network protocol layers by implementing the PAR (Positive

Acknowledgement with Retransmission) data link protocol on top of a emulated physical layer {TCP

does the actual transmissions at the physical layer}. This is the ONLY programming assignment in

CS3516 to be completed by two-person programming teams.

Photo Clients

Each Photo Client should be written to be run on any arbitrary CCC Linux machine. The command line

for initiating the client is:

 ./client servermachine id num_photos

where

 servermachine specifies the logical name for the server machine (e.g., cccWORK4.wpi.edu).

 id is a unique integer identifying this client.

 num_photos indicates the number of photos this client wants to upload to the Photo Server.

and

 client_id.log indicates the file which records significant events for this client. id is the ASCII

string corresponding to command line argument matches id.

The client communicates with the photo server assuming knowledge of a unique “well-known” port for

the Photo Server.

The Client Application/Network Layer

The client application layer’s responsibility is to read digital photos from jpg photo files and send them

one at a time to the photo server. All photos are identified via photoij.jpg where i corresponds to the

client’s id and j corresponds to the j
th

photo for the i
th

 client. The client application layer indicates to the

CS3516 Computer Networks B14

 2

client network layer when it has completely read in a photo by setting the end-of-photo indicator. {Note,

for this assignment the abstraction of separating these two layers is not necessary}.

Initially, the client network layer calls the physical layer to establish a connection for this particular

client with the corresponding server network layer. Once a connection has been established, the client

network layer begins receiving 200 byte “chunks” of photos from the photo file and depositing each 200

byte chunk into a packet payload. Additionally, the packet payload contains one byte as an end-of-photo

indicator for the application layer. The client network layer sends the packet to the client data link layer

and waits for a network layer ACK packet from the photo server network layer.

When the last photo for a client has been sent and ACK’ed, the client network layer calls the client

physical layer to close the connection to the server and terminate the client.

The Client Data Link Layer

The responsibilities of the data link layer involve error detection and the PAR protocol with a timeout

mechanism that causes a frame retransmission when frames are not promptly acknowledged.

Frame Format

Information at the data link layer is transmitted between the client and the server in frames. All frames

need a frame-type byte to distinguish data and ACK frames. All data frames must have two bytes for the

sequence number, one end-of-packet byte and two bytes for error-detection. The client process sends

data frames that contain from 1 to 124 bytes of payload (encapsulated data from the network layer

packet). ACK frames consist of zero bytes of payload, a two-byte sequence number, and a two-byte error

detection field.

The client data link layer receives packets from the client network layer, converts packets into frames

and sends frames to the client physical layer. Upon receiving each packet from the client network layer,

the client data link layer splits the packet into frame payloads. The data link layer builds each frame as

follows:

 put the payload in the frame.

 deposit the proper contents into the end-of-packet byte to indicate if this is the last frame of a packet.

 compute the value of the error-detection bytes and put them into the frame.

 start a frame timer.

 send the frame to the client physical layer.

The client data link layer then waits to receive a frame from the server data link layer. If the received

frame is an ACK frame successfully received before the timer expires, the client sends the next frame of

the packet. When the last frame of a packet has been successfully ACK’ed, the client data link layer

waits to receive a data frame. If the received frame is a data frame, then its payload is a network layer

CS3516 Computer Networks B14

 3

ACK packet. The client data link layer then sends the valid ACK packet up to the client network layer,

and then waits to receive a new packet from the client network layer.

If an ACK frame is received in error, this event is recorded in the log and the client data link layer

continues as if the ACK was never received. If the timer expires, the client data link layer retransmits

the frame.

The Client Physical Layer

The client physical layer sends the frame received from the client data link layer as an actual TCP

message to the server physical layer. The client physical layer receives frames as actual TCP message

from the server physical layer. This triggers a received frame event for the client data link layer.

The client records significant events in a log file client_id.log. Significant events include: packet sent,

frame sent, frame resent, ACK frame received successfully, ACK packet received successfully, data

frame received in error, ACK frame received in error, and timer expires. For logging purposes identify

the packet and the frame within a packet by number for each event. Begin counting packets and frames

at 1 (e.g. “frame 2 of packet 218 was retransmitted”).

The client data link layer needs to keep a running tally of the significant events recorded in

client_id.log. The final entry in the client_id.log should include: the total number of frames sent, the

total number of frame retransmissions, the total number of good ACKs received and the total number of

ACK frames received with errors. Note – a very useful debugging tool is to be able to print the running

tally BEFORE the client has finished.

The Concurrent Photo Server

The concurrent Photo Server should be written to run on an arbitrary CCC Linux machine. The server

emulates the same three layers as the client process (application/network, data link and physical layer).

However, as the concurrent server handles multiple client conversations, it maintains separate versions

of these three layers for each currently active client. The concurrent photo server is always started first.

The concurrent server begins by waiting for the establishment of a TCP connection from a new client.

Once the connection is established, the server forks a child process which then handles all the

communication with that particular photo client. The parent server process returns to waiting to accept

new photo clients.

The command line to start the server is simply:

 ./server

where

 photonewij.jpg indicates the name of the j
th

 photo for the i
th

client in the server’s photo gallery.

CS3516 Computer Networks B14

 4

and

 server_id.log indicates the file which records significant server events relative to client id.

The forked child process of the server is responsible for communication to one photo client using the

three emulated protocol layers.

The Photo Server Application/Network Layer

The server application layer’s responsibility is to take 200 byte photo chunks out of network packets to

reconstruct the client’s photos and write them out to the correct files in the photo gallery. The server

application layer interrogates the end-of-photo indicator byte in the packet to know when the current

packet is the last packet for a photo so the specific photo file can be closed.

After each packet has been processed by the server application layer, the server network layer creates

an ACK packet and sends it to the server data link layer.

The Server Data Link Layer

The server data link layer cycles between receiving a frame from the server physical layer, assembling

a packet and possibly sending the packet up to the server network layer, receiving an ACK packet from

the server network layer and sending it as a data frame, and sending an ACK frame back to the client via

the server physical layer. The server data link layer sends ACK frames consisting of two bytes of

sequence number and the two error-detection bytes.

There is no need for a timer at the server. Note - the setting of the end-of-packet byte indicates to the

server data link layer that the current received frame is the last frame of a packet. When the client

closes the connection to the server, the forked child process of the server terminates.

The data link layer has to check for transmission errors using the error-detection bytes. If the received

data frame is in error, this event is recorded and the receiving process waits to receive another frame.

The server data link layer checks received frames for duplicates and reassembles frames into packets

and sends one packet at a time to the server network layer. Note – the server data link layer needs to

send an ACK frame when a duplicate frame is detected due to possibly damaged ACK frames. The

server records significant events associated with client id that includes frame received, frame received in

error, duplicate frame received, ACK frame sent, ACK packet sent and packet sent to the network layer

in server_id.log.

Frame Error Simulation

Since real TCP guarantees no errors in the emulated physical layer, your program must inject artificial

transmission errors into your physical layer.

CS3516 Computer Networks B14

 5

Force a client transmission error in every 5th frame sent by flipping any single bit in the error-

detection bytes prior to transmission of the frame. Force a server transmission error in every 13th

ACK frame sent by using the same flipping mechanism. (i.e., frames 5, 10, 15, … sent by the client will

be perceived as in error by the server and ACK frames 13, 26, 39, … sent by the server will be

perceived as error by the client.) When the client times out due to either type of transmission error, it

resends the same frame with the correct error-detection byte.

Assume for simplicity in this assignment that all data frames sent by the server data link layer are

transmitted “error free”. Therefore, the client data link layer does NOT need to ACK the data frames

sent by the server data link layer.

Assignment Hints

 [Debug] Build and debug your programs in stages. Begin by getting the client and server working

without processing errors and without a timer. Then add the error generating functions and the timer

mechanisms to the client. Initially, the client and server can exist on the same machine if this simplifies

debugging. However, at least one member of the programming team needs to focus on making sure the

final project permits the client and server to exist and be tested by the TA on any arbitrary CCC Linux

machine.

 [Error Detection] While CRC at the bit level will be discussed in class, it is recommended that you

use a two-byte XOR folding algorithm of all the frame bytes to create your error-detection bytes. While

this error detection scheme is not as strong as CRC, it is adequate to handle the single bit errors being

induced by the emulated data link layer. For ACK frames, the error-detection bytes simply become a

copy of the two-byte sequence number.

 The correct way to handle a timer and an incoming TCP message requires using a timer and the

select system call. You will lose points if you use polling to do this assignment, but given it is the last

assignment at the end of the term, you may have to resort to polling if your team is unable to

successfully implement select. It is important that your README file identify which technique your

program employed.

 [Performance Timing] You must measure the total execution time of the complete emulated

transfer of all the photos for each client. Be sure to print this result out in readable form in the file

client_id.log.

 [Timers] The PAR protocol can fail if there is a premature timeout. Set the timeout period on

your timer large enough to insure NO premature timeouts. However, setting the timer “crazy

high” will cause your photo transfers to run quite long.

 port numbers: You can “hardwire in “ the well-know port number of the server for this assignment.

Do not use low port numbers and we will establish a scheme for unique port numbers for each project

team.

CS3516 Computer Networks B14

 6

 The actual content of the photos written by the Photo Server should exactly match the photos read

by the client.

 [Documentation] Several small design decisions are deliberately vague in this assignment. The

project team MUST explain all these design decisions both as documentation in the code and via a

separate README file. Remember: This is a team project and all routines must specify only a

SINGLE primary author for each routine as part of the documentation!! You CANNOT simply

attribute routines to all team members!!

Do not wait for the official test data to work on this assignment. Use your own digital photo to test out

the client prior to the TA releasing the official test photos.

What to turn in for Program 3

The TA will make available official test photo files a couple of days before the due date. Turn in your

assignment using the Linux turnin program. Turn in the source files for the clients and the server, a

README file and a make file that the TA can run to test your client and server. Tar all your files

together before submitting to turnin. As this is the last assignment at the end of the term, if your

program only works partially, to maximize your potential for partial credit for programs that do

not fully work properly it is quite important that your README file identify clearly which parts

of your program work and you also identify those parts of your program which still do not work

when you turned in this program. If you need separate unique ‘driver’ programs to show those

components which do in fact work, please provide them and explain how the TA should run them

to give your team as much partial credit as possible.

