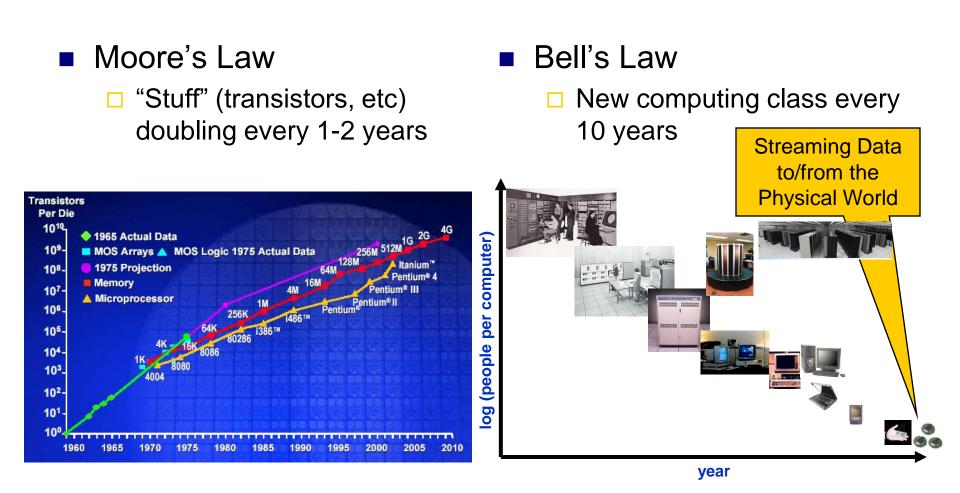


The Mote Revolution:

Low Power Wireless Sensor Network Devices

University of California, Berkeley

Joseph Polastre Robert Szewczyk Cory Sharp David Culler



Outline

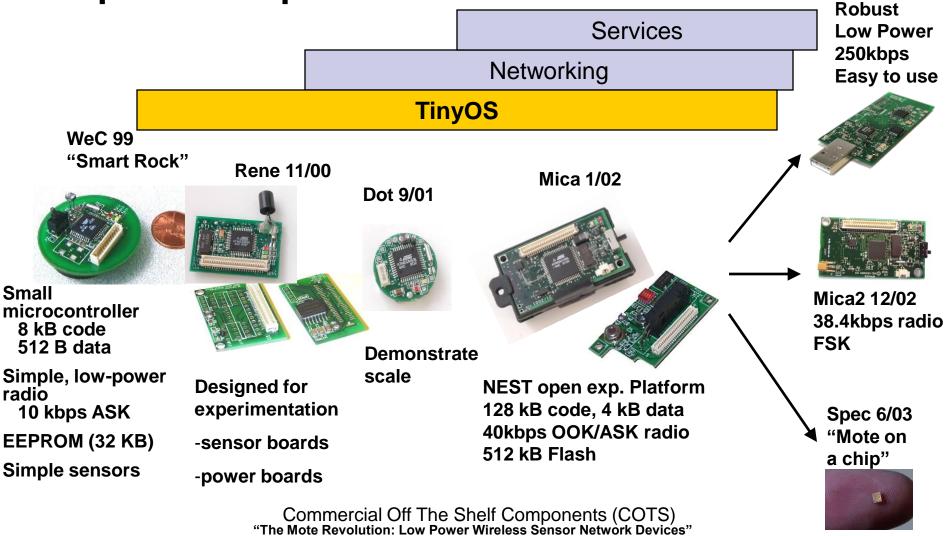
- Trends and Applications
- Mote History and Evolution
- Design Principles
- Telos

Faster, Smaller, Numerous

Image: Ima

- - **Integrated Biology**
 - Structural Monitoring

- Disconnection & Lifetime Low Latency **Interactive and Control**
 - Pursuer-Evader
 - Intrusion Detection
 - Automation



Hot Chips 2004 : Aug 22-24, 2004

Telos 4/04

Open Experimental Platform

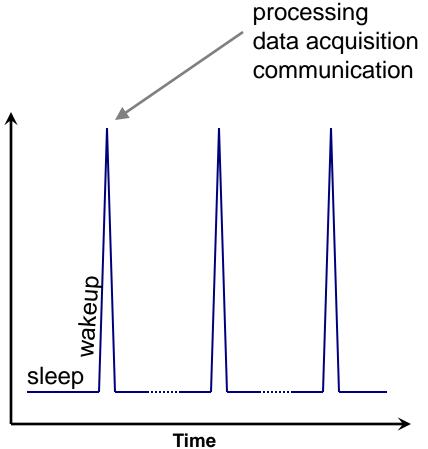
Hot Chips 2004 : Aug 22-24, 2004

					65			
Mote Evolution								
Mote Type	WeC	René	René 2	Dot	Mica	Mica2Dot	Mica 2	Telos
Year	1998	1999	2000	2000	2001	2002	2002	2004
	۲							
Microcontroller								
Туре	AT90LS8535		ATmega163		ATmega128			TI MSP430
Program memory (KB)	8		16		128			60
RAM (KB)	0.5		1		4			2
Active Power (mW)	15		15		8		33	3
Sleep Power (μ W)	45		45		75		75	6
Wakeup Time (μ s)	1000		36		180 1		180	6
Nonvolatile storage								
Chip	24LC256				AT45DB041B			ST M24M01S
Connection type	I ² C				SPI			I ² C
Size (KB)	32				512			128
Communication								
Radio	TR1000				TR1000		1000	CC2420
Data rate (kbps)	10				40		8.4	250
Modulation type	OOK				ASK		SK	O-QPSK
Receive Power (mW)	9			12	29		38	
Transmit Power at 0dBm (mW)	36			36	42		35	
Power Consumption								
Minimum Operation (V)	2.7		2.7		2.7			1.8
Total Active Power (mW)		24			27	44	89	41
Programming and Sensor Interfac	ce							
Expansion	none	51-pin	51-pin	none	51-pin	19-pin	51-pin	10-pin
Communication	IEEE 1284 (programming) and RS232 (requires additional hardware)							USB
Integrated Sensors	"The Mote Revolution: Low Power Wireless Sensor Network Devices" no							yes

"The Mote Revolution: Low Power Wireless Sensor Network Devices" Hot Chips 2004 : Aug 22-24, 2004

Low Power Operation

Efficient Hardware


Integration and Isolation

- Complementary functionality (DMA, USART, etc)
- Selectable Power States (Off, Sleep, Standby)
- Operate at low voltages and low current
 - Run to cut-off voltage of power source
- Efficient Software
 - □ Fine grained control of hardware
 - Utilize wireless broadcast medium
 - Aggregate

Typical WSN Application

Periodic Data Collection Network Maintenance □ Majority of operation Triggered Events **Detection/Notification** Power Infrequently occurs But... must be reported quickly and reliably Long Lifetime sleep Months to Years without changing batteries Power management is the key to WSN success

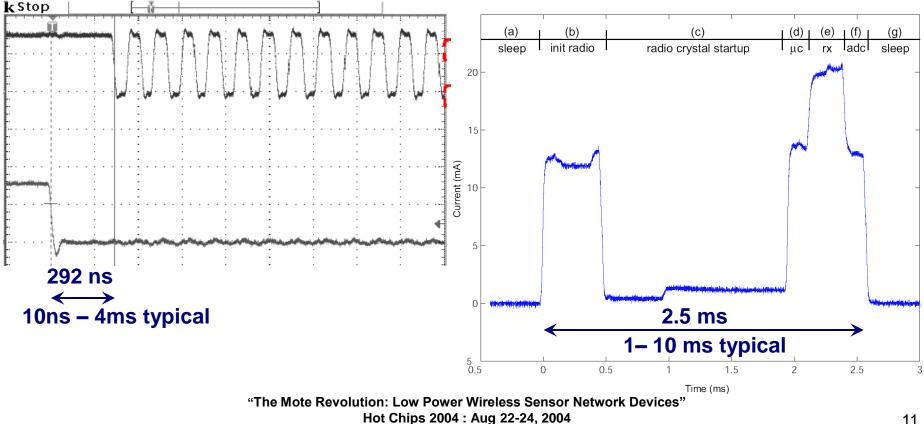
Design Principles

Key to Low Duty Cycle Operation:
Sleep – majority of the time
Wakeup – quickly start processing
Active – minimize work & return to sleep

Sleep

Majority of time, node is asleep >99%

Minimize sleep current through


- Isolating and shutting down individual circuits
- Using low power hardware
 - Need RAM retention
- Run auxiliary hardware components from low speed oscillators (typically 32kHz)

Perform ADC conversions, DMA transfers, and bus operations while microcontroller core is stopped

Wakeup

Overhead of switching from Sleep to Active Mode Radio (FSK) Microcontroller

Active

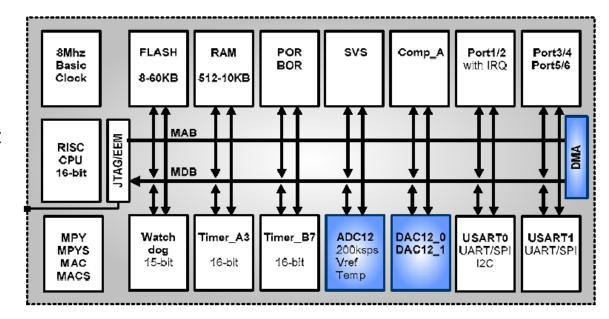
- Microcontroller
 - Fast processing, low active power
 - Avoid external oscillators
- Radio
 - High data rate, low power tradeoffs
 - Narrowband radios
 - Low power, lower data rate, simple channel encoding, faster startup
 - Wideband radios
 - More robust to noise, higher power, high data rates

- External Flash (stable storage)
 - Data logging, network code reprogramming, aggregation
 - □ High power consumption
 - Long writes
- Radio vs. Flash
 - 250kbps radio sending 1 byte
 - Energy : 1.5µJ
 - Duration : 32µs
 - □ Atmel flash writing 1 byte
 - Energy : 3μJ
 - Duration : 78µs

Telos Platform

- A new platform for low power research
 - □ Monitoring applications:
 - Environmental
 - Building
 - Tracking
- Long lifetime, low power, low cost
- Built from application experiences and low duty cycle design principles
- Robustness
 - Integrated antenna
 - Integrated sensors
 - Soldered connections

- Standards Based
 - □ IEEE 802.15.4
 - USB
- IEEE 802.15.4
 - CC2420 radio
 - 250kbps
 - □ 2.4GHz ISM band
 - TI MSP430
 - Ultra low power
 - 1.6µA sleep
 - 460µA active
 - 1.8V operation
- Open embedded platform with open source tools, operating system (TinyOS), and designs.


Low Power Operation

TI MSP430 -- Advantages over previous motes

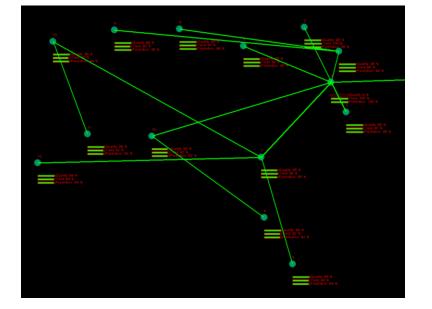
- 16-bit core
- 12-bit ADC
 - 16 conversion store registers
 - Sequence and repeat sequence programmable
- < 50nA port leakage (vs. 1 μ A for Atmels)
- Double buffered data buses
- Interrupt priorities
- Calibrated DCO

Buffers and Transistors

 Switch on/off each sensor and component subsystem

Minimize Power Consumption

- Compare to MicaZ: a Mica2 mote with AVR mcu and 802.15.4 radio
- Sleep
 - □ Majority of the time
 - 🗆 Telos: 2.4µA
 - MicaZ: 30μA
- Wakeup
 - □ As quickly as possible to process and return to sleep
 - Telos: 290ns typical, 6μs max
 - □ MicaZ: 60µs max internal oscillator, 4ms external
- Active
 - □ Get your work done and get back to sleep
 - □ Telos: 4-8MHz 16-bit
 - MicaZ: 8MHz 8-bit



CC2420 Radio IEEE 802.15.4 Compliant

CC2420

Fast data rate, robust signal

- 250kbps : 2Mchip/s : DSSS
- 2.4GHz : Offset QPSK : 5MHz
- 16 channels in 802.15.4
- -94dBm sensitivity
- Low Voltage Operation
 - 1.8V minimum supply
- Software Assistance for Low Power Microcontrollers
 - 128byte TX/RX buffers for full packet support
 - Automatic address decoding and automatic acknowledgements
 - Hardware encryption/authentication
 - Link quality indicator (assist software link estimation)
 - samples error rate of first 8 chips of packet (8 chips/bit)

Power Calculation Comparison

Design for low power

- Mica2 (AVR)
 - □ 0.2 ms wakeup
 - □ 30 µW sleep
 - 33 mW active
 - 21 mW radio
 - 19 kbps
 - 2.5V min
 - 2/3 of AA capacity

- MicaZ (AVR)
 - □ 0.2 ms wakeup
 - 30 μW sleep
 - □ 33 mW active
 - □ 45 mW radio
 - 250 kbps
 - □ 2.5V min
 - 2/3 of AA capacity

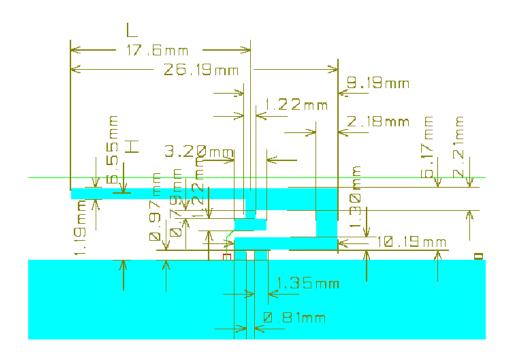
- Telos (TI MSP)
 - □ 0.006 ms wakeup
 - 2 μW sleep
 - 3 mW active
 - □ 45 mW radio
 - 250 kbps
 - □ 1.8V min
 - 8/8 of AA capacity

Supporting mesh networking with a pair of AA batteries reporting data once every 3 minutes using synchronization (<1% duty cycle)

453 days

328 days

Integrated Antenna


Inverted-F Microstrip Antenna and SMA Connector

Inverted-F

- Psuedo Omnidirectional
- 50m range indoors
- 125m range outdoors
- Optimum at 2400-2460MHz

SMA Connector

- Enabled by moving a capacitor
- > 125m range
- Optimum at 2430-2483MHz

Sensors

Integrated Sensors

- Sensirion SHT11
 - Humidity (3.5%)
 - Temperature (0.5°C)
 - Digital sensor
- Hamamatsu S1087
 - Photosynthetically active light
 - Silicon diode
- Hamamatsu S1337-BQ
 - Total solar light
 - Silicon diode

- Expansion
 - 6 ADC channels
 - 4 digital I/O
 - Existing sensor boards
 - Magnetometer
 - Ultrasound
 - Accelerometer
 - 4 PIR sensors
 - Microphone
 - Buzzer

Conclusions

- New design approach derived from our experience with resource constrained wireless sensor networks
 - Active mode needs to run quickly to completion
 - □ Wakeup time is crucial for low power operation
 - Wakeup time and sleep current set the minimal energy consumption for an application
 - Sleep most of the time
- Tradeoffs between complexity/robustness and low power radios
- Careful integration of hardware and peripherals