

### The Mote Revolution:

Low Power Wireless Sensor Network Devices

University of California, Berkeley

Joseph Polastre Robert Szewczyk Cory Sharp David Culler

> "The Mote Revolution: Low Power Wireless Sensor Network Devices" Hot Chips 2004 : Aug 22-24, 2004





#### Outline

- Trends and Applications
- Mote History and Evolution
- Design Principles
- Telos




## Faster, Smaller, Numerous

- Moore's Law
  - "Stuff" (transistors, etc)doubling every 1-2 years

Bell's Law

New computing class every



year



- - **Integrated Biology**
  - Structural Monitoring

Disconnection & Lifetime Environmental Monitoring
 Habitat Monitoring
 Into: Low Latency

Interactive and Control

- Pursuer-Evader
- Intrusion Detection
- **Automation**







# Open Experimental Platform

Services

Networking

#### **TinyOS**

**WeC 99** "Smart Rock"

Rene 11/00



**Small** microcontroller 8 kB code 512 B data

Simple, low-power radio 10 kbps ASK

EEPROM (32 KB)

Simple sensors



Dot 9/01

**Demonstrate** scale

**Designed for** experimentation

-sensor boards

-power boards

Mica 1/02



**NEST open exp. Platform** 128 kB code, 4 kB data 40kbps OOK/ASK radio 512 kB Flash

**Telos 4/04** Robust **Low Power** 250kbps Easy to use



Mica2 12/02 38.4kbps radio **FSK** 

Spec 6/03 "Mote on a chip"



Commercial Off The Shelf Components (COTS) "The Mote Revolution: Low Power Wireless Sensor Network Devices" Hot Chips 2004: Aug 22-24, 2004

## Mote Evolution

Integrated Sensors

|                                  | . <b>v</b> O i O                                                 |        |           |      |            | * *      |        |                  |
|----------------------------------|------------------------------------------------------------------|--------|-----------|------|------------|----------|--------|------------------|
| Mote Type                        | WeC                                                              | René   | René 2    | Dot  | Mica       | Mica2Dot | Mica 2 | Telos            |
| Year                             | 1998                                                             | 1999   | 2000      | 2000 | 2001       | 2002     | 2002   | 2004             |
|                                  |                                                                  |        |           |      |            |          |        |                  |
| Microcontroller                  |                                                                  |        |           |      |            |          |        |                  |
| Type                             | AT90LS8535                                                       |        | ATmega163 |      | ATmega128  |          |        | TI MSP430        |
| Program memory (KB)              | 8                                                                |        | 16        |      | 128        |          |        | 60               |
| RAM (KB)                         | 0.5                                                              |        | 1         |      | 4          |          |        | 2                |
| Active Power (mW)                | 15                                                               |        | 15        |      | 8          |          | 33     | 3                |
| Sleep Power (µW)                 | 45                                                               |        | 45        |      | 75         |          | 75     | 6                |
| Wakeup Time (μs)                 | 1000                                                             |        | 36        |      | 180        |          | 180    | 6                |
| Nonvolatile storage              |                                                                  |        |           |      |            |          |        |                  |
| Chip                             | 24LC256                                                          |        |           |      | AT45DB041B |          |        | ST M24M01S       |
| Connection type                  | $ m I^2C$                                                        |        |           |      | SPI        |          |        | I <sup>2</sup> C |
| Size (KB)                        | 32                                                               |        |           |      | 512        |          |        | 128              |
| Communication                    |                                                                  |        |           |      |            |          |        |                  |
| Radio                            | TR1000                                                           |        |           |      | TR1000     | CC1000   |        | CC2420           |
| Data rate (kbps)                 | 10                                                               |        |           |      | 40         | 3        | 8.4    | 250              |
| Modulation type                  | OOK                                                              |        |           |      | ASK        | FSK      |        | O-QPSK           |
| Receive Power (mW)               | 9                                                                |        |           |      | 12         | 29       |        | 38               |
| Transmit Power at 0dBm (mW)      | 36                                                               |        |           |      | 36 42      |          | 35     |                  |
| Power Consumption                |                                                                  |        |           |      |            |          |        |                  |
| Minimum Operation (V)            | 2.7                                                              |        | 2.7       |      | 2.7        |          |        | 1.8              |
| Total Active Power (mW)          | 24                                                               |        |           |      | 27         | 44       | 89     | 41               |
| Programming and Sensor Interface | ce                                                               |        |           |      |            |          |        |                  |
| Expansion                        | none                                                             | 51-pin | 51-pin    | none | 51-pin     | 19-pin   | 51-pin | 10-pin           |
| Communication                    | IEEE 1284 (programming) and RS232 (requires additional hardware) |        |           |      |            |          |        | USB              |
|                                  |                                                                  |        |           |      |            |          |        |                  |

"The Mote Revolution: Low Power Wireless Sensor Network Devices"
Hot Chips 2004 : Aug 22-24, 2004

yes

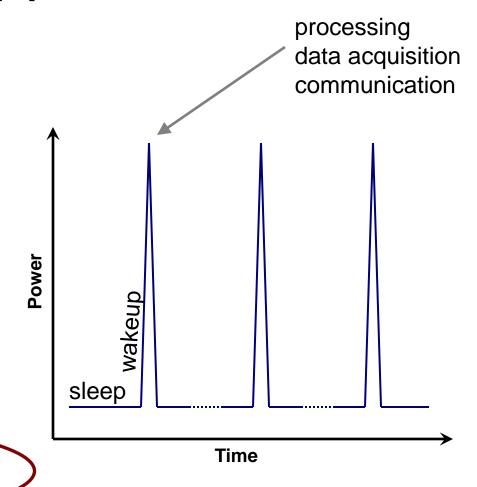
no





## Low Power Operation

- Efficient Hardware
  - Integration and Isolation
    - Complementary functionality (DMA, USART, etc)
  - Selectable Power States (Off, Sleep, Standby)
  - Operate at low voltages and low current
    - Run to cut-off voltage of power source
- Efficient Software
  - □ Fine grained control of hardware
  - Utilize wireless broadcast medium
  - Aggregate








## Typical WSN Application

- Periodic
  - Data Collection
  - Network Maintenance
  - ☐ Majority of operation
- Triggered Events
  - Detection/Notification
  - Infrequently occurs
    - But... must be reported quickly and reliably
- Long Lifetime
  - Months to Years without changing batteries
  - Power management is the key to WSN success







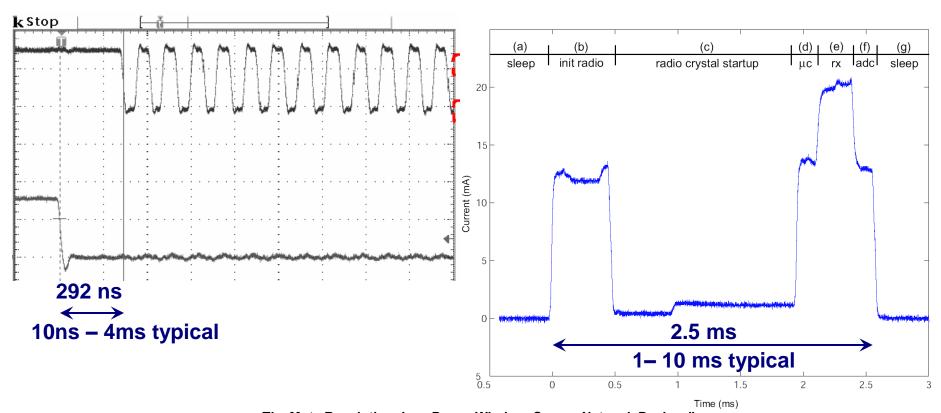
## Design Principles

- Key to Low Duty Cycle Operation:
  - □ Sleep majority of the time
  - Wakeup quickly start processing
  - Active minimize work & return to sleep





## Sleep


- Majority of time, node is asleep
  - □ >99%
- Minimize sleep current through
  - Isolating and shutting down individual circuits
  - Using low power hardware
    - Need RAM retention
- Run auxiliary hardware components from low speed oscillators (typically 32kHz)
  - Perform ADC conversions, DMA transfers, and bus operations while microcontroller core is stopped



## Wakeup

- Overhead of switching from Sleep to Active Mode
- Microcontroller

Radio (FSK)





### Active

- Microcontroller
  - Fast processing, low active power
  - Avoid external oscillators
- Radio
  - High data rate, low power tradeoffs
  - Narrowband radios
    - Low power, lower data rate, simple channel encoding, faster startup
  - Wideband radios
    - More robust to noise, higher power, high data rates

- External Flash (stable storage)
  - Data logging, network code reprogramming, aggregation
  - High power consumption
  - Long writes
- Radio vs. Flash
  - 250kbps radio sending 1 byte
    - Energy : 1.5μJ
    - Duration : 32μs
  - Atmel flash writing 1 byte
    - Energy : 3μJ
    - Duration : 78μs

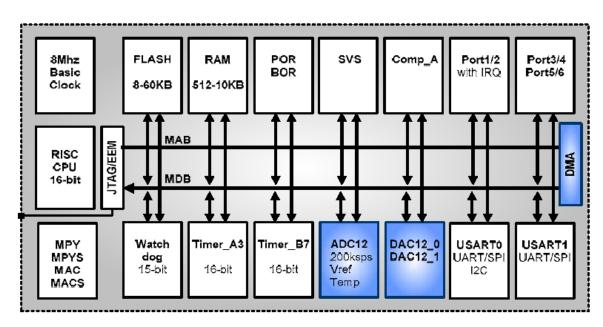


### **Telos Platform**

- A new platform for low power research
  - Monitoring applications:
    - Environmental
    - Building
    - Tracking
- Long lifetime, low power, low cost
- Built from application experiences and low duty cycle design principles
- Robustness
  - Integrated antenna
  - Integrated sensors
  - Soldered connections

- Standards Based
  - IEEE 802.15.4
  - USB
- IEEE 802.15.4 **ZigBee** 
  - CC2420 radio
  - Frame-based
  - □ 250kbps
  - 2.4GHz ISM band
- TI MSP430
  - Ultra low power
    - 1.6μA sleep
    - 460µA active
    - 1.8V operation

Open embedded platform with open source tools, operating system (TinyOS), and designs.








## Low Power Operation

- TI MSP430 -- Advantages over previous motes
  - 16-bit core
  - 12-bit ADC
    - 16 conversion store registers
    - Sequence and repeat sequence programmable
  - < 50nA port leakage (vs. 1μA for Atmels)</p>
  - Double buffered data buses
  - Interrupt priorities
  - Calibrated DCO
- Buffers and Transistors
  - Switch on/off each sensor and component subsystem

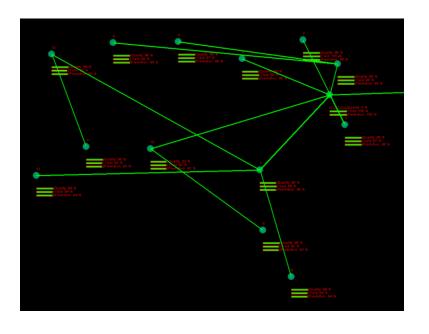






## Minimize Power Consumption

- Compare to MicaZ: a Mica2 mote with AVR mcu and 802.15.4 radio
- Sleep
  - Majority of the time
  - Telos: 2.4μA
  - MicaZ: 30μA
- Wakeup
  - As quickly as possible to process and return to sleep
  - Telos: 290ns typical, 6μs max
  - MicaZ: 60μs max internal oscillator, 4ms external
- Active
  - Get your work done and get back to sleep
  - Telos: 4-8MHz 16-bit
  - MicaZ: 8MHz 8-bit






### CC2420 Radio

#### IEEE 802.15.4 Compliant

- CC2420
  - Fast data rate, robust signal
    - 250kbps : 2Mchip/s : DSSS
    - 2.4GHz : Offset QPSK : 5MHz
    - 16 channels in 802.15.4
    - -94dBm sensitivity
  - Low Voltage Operation
    - 1.8V minimum supply
  - □ Software Assistance for Low Power Microcontrollers
    - 128byte TX/RX buffers for full packet support
    - Automatic address decoding and automatic acknowledgements
    - Hardware encryption/authentication
    - Link quality indicator (assist software link estimation)
      - samples error rate of first 8 chips of packet (8 chips/bit)









#### Power Calculation Comparison

#### Design for low power

- Mica2 (AVR)
  - □ 0.2 ms wakeup
  - 30 μW sleep
  - 33 mW active
  - 21 mW radio
  - □ 19 kbps
  - 2.5V min
    - 2/3 of AA capacity

- MicaZ (AVR)
  - 0.2 ms wakeup
  - 30 μW sleep
  - □ 33 mW active
  - 45 mW radio
  - □ 250 kbps
  - □ 2.5V min
    - 2/3 of AA capacity

- Telos (TI MSP)
  - □ 0.006 ms wakeup
  - 2 μW sleep
  - □ 3 mW active
  - 45 mW radio
  - 250 kbps
  - □ 1.8V min
    - 8/8 of AA capacity

Supporting mesh networking with a pair of AA batteries reporting data once every 3 minutes using synchronization (<1% duty cycle)

453 days

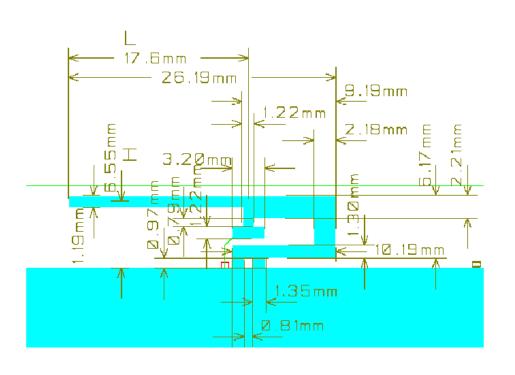
328 days

945 days





## Integrated Antenna


#### Inverted-F Microstrip Antenna and SMA Connector

#### Inverted-F

- Psuedo Omnidirectional
- □ 50m range indoors
- □ 125m range outdoors
- Optimum at 2400-2460MHz

#### SMA Connector

- Enabled by moving a capacitor
- □ > 125m range
- Optimum at 2430-2483MHz





### Sensors

- Integrated Sensors
  - Sensirion SHT11
    - Humidity (3.5%)
    - Temperature (0.5°C)
    - Digital sensor
  - Hamamatsu S1087
    - Photosynthetically active light
    - Silicon diode
  - Hamamatsu S1337-BQ
    - Total solar light
    - Silicon diode



- Expansion
  - 6 ADC channels
  - 4 digital I/O
  - Existing sensor boards
    - Magnetometer
    - Ultrasound
    - Accelerometer
    - 4 PIR sensors
    - Microphone
    - Buzzer



"The Mote Revolution: Low Power Wireless Sensor Network Devices'
Hot Chips 2004 : Aug 22-24, 2004





### Conclusions

- New design approach derived from our experience with resource constrained wireless sensor networks
  - Active mode needs to run quickly to completion
  - Wakeup time is crucial for low power operation
    - Wakeup time and sleep current set the minimal energy consumption for an application
  - □ Sleep most of the time
- Tradeoffs between complexity/robustness and low power radios
- Careful integration of hardware and peripherals