

Evaluating the Performance of Synchronous and

Asynchronous Media Access Control Protocols in the

Contiki Operating System

A Major Qualifying Project

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in partial fulfillment of the requirements for the

Degree of Bachelor of Science

in Computer Science

by

Christopher Pinola

December 2012

Approved:

Professor Robert Kinicki, Advisor

i

Abstract

Contiki, a lightweight operating system for wireless sensor networks (WSNs), utilizes

Radio Duty Cycling (RDC) to conserve sensor battery power. This project implemented and

evaluated WPI-MAC, a reimplementation of the Crankshaft Media Access Control (MAC)

protocol. Implemented as a new RDC driver within the Cooja simulator, WPI-MAC was

compared via simulation against: ContikiMAC and X-MAC. Preliminary results indicate that

under three common WSN traffic patterns ContikiMAC outperforms WPI-MAC in terms of

energy efficiency and delay, but WPI-MAC yields lower average delays compared to X-MAC.

ii

Acknowledgements

I would like to thank Professor Robert Kinicki for his insight and guidance throughout

the course of this project. Furthermore, I would also like to thank fellow students, Kerry Lynn

and Shary Llanos Antonio, for sharing their knowledge and experience.

iii

Contents

1. Introduction ... 1

2. Background ... 4

2.1. Wireless Sensor Networks .. 4

2.2. Contiki .. 5

2.2.1. Differences from TinyOS .. 6

2.2.2. The Radio Duty Cycling Layer ... 7

2.3. Media Access Control Protocols .. 8

2.3.1. Synchronous Protocols.. 9

2.3.2. Asynchronous Protocols ... 10

2.4. Cooja: The Contiki Simulator .. 12

3. Implementation ... 14

4. Methodology ... 19

4.1. Simulation Environment .. 19

4.2. Tested MAC Protocols ... 20

4.2.1. WPI-MAC ... 20

4.2.2. ContikiMAC and X-MAC .. 22

4.3. Benchmarking Traffic Patterns ... 23

4.3.1. Broadcast... 23

4.3.2. Local Gossip/Unicast Conversations .. 23

iv

4.3.3. Convergecast ... 24

5. Results ... 25

5.1. Broadcast .. 25

5.2. Local Gossip ... 28

5.3. Convergecast .. 31

6. Conclusions ... 35

7. Future Work .. 36

7.1.1. Support Multi-hop Traffic ... 36

7.1.2. Fast Sleep Optimization .. 36

7.1.3. Dynamically Accommodate Varying Population Size .. 37

7.1.4. Selective Omission of Broadcast Slot ... 37

7.1.5. Additional Testing With Larger Packets ... 37

References ... 38

v

List of Figures

Figure 5.1: X-MAC Radio Duty Cycling Data – Broadcast Test ... 26

Figure 5.2: ContikiMAC Duty Cycling Data – Broadcast Test .. 26

Figure 5.3: WPI-MAC Duty Cycling Data – Broadcast Test ... 26

Figure 5.4: WPI-MAC Cooja Timeline – Broadcast Test ... 27

Figure 5.5: X-MAC Cooja Timeline – Broadcast Test ... 27

Figure 5.6: ContikiMAC Cooja Timeline – Broadcast Test .. 27

Figure 5.7: WPI-MAC Duty Cycling Data – Local Gossip Test .. 28

Figure 5.8: X-MAC Duty Cycling Data – Local Gossip Test ... 29

Figure 5.9: ContikiMAC Duty Cycling Data – Local Gossip Test ... 29

Figure 5.10: WPI-MAC Cooja Timeline – Local Gossip Test .. 29

Figure 5.11: X-MAC Cooja Timeline – Local Gossip Test .. 29

Figure 5.12: ContikiMAC Cooja Timeline – Local Gossip Test .. 30

Figure 5.13: WPI-MAC Duty Cycling Data – Convergecast Test .. 31

Figure 5.14: X-MAC Duty Cycling Data – Convergecast Test .. 32

Figure 5.15: ContikiMAC Duty Cycling Data – Convergecast Test .. 32

Figure 5.16: WPI-MAC Cooja Timeline – Convergecast Test ... 32

Figure 5.17: X-MAC Cooja Timeline – Convergecast Test .. 33

Figure 5.18: ContikiMAC Cooja Timeline – Convergecast Test .. 33

file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445260
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445261
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445262
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445263
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445264
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445265
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445266
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445267
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445268
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445269
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445270
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445271
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445272
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445273
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445274
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445275
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445276
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445277

vi

List of Tables

Table 3.1 WPI-MAC Parameter Specification .. 17

Table 5.1: Average Latency by Protocol – Broadcast Test .. 27

Table 5.2: Average Latency by Protocol – Local Gossip Test .. 30

Table 5.3: Average Latency by Protocol – Convergecast Test .. 33

file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445278
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445279
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445280
file:///C:/Users/chris/Google%20Drive/WPI/Senior%20Year/MQP/Pinola_MQP_rek_review5.docx%23_Toc345445281

1

1. Introduction

Wireless sensor networks (WSNs) are a relatively new field of research in computer

science with many broad and exciting possible applications. WSNs monitor the structural

integrity of bridges, observe tidal conditions, measure air quality, and even detect disasters like

fires and landslides. These networks are made up of nodes, known as motes, which generally

consist of a power source, wireless radio, microcontroller, and array of sensors. The mote

networks are often deployed in harsh environments where it is not feasible to attach them to a

source of constant power. This limitation makes it imperative to manage the limited supply of

energy to these motes in a highly efficient manner. The mote wireless transceiver is often the

most wasteful in terms of energy consumption and efficiency. The TelosB platform is a popular

hardware standard for wireless sensors. While the TelosB unit is active, the processor draws a

current of 1.8 milliamperes and the wireless transceiver draws 23 milliamperes [1].

 Managing a wireless transceiver in an energy efficient manner in a mote is inherently

challenging due to its very nature: it needs to be powered in order to transmit or receive packets.

Furthermore, depending on the application, the mote may utilize its transceiver in an

unpredictable fashion. A wireless transceiver consumes nearly the same amount of power while

passively listening for messages over the air as when actively sending data [1]. Therefore, the

only approach to limiting the power consumption of a transceiver is to power it off entirely [2].

Unfortunately, this introduces an entirely different set of problems related to reliable

communication between multiple nodes. To combat these issues, Media Access Control (MAC)

developers utilize a strategy known as duty cycling in WSNs to intelligently regulate when a

mote’s wireless transceiver is in the active power state.

2

Contiki is a recently developed open source operating system intended for use within

wireless sensor networks [3]. Traditionally, duty cycling mechanisms are built into the MAC

layer of the operating system’s networking stack. Contiki, however, employs duty cycling tactics

in a separate level of the networking stack known as the Radio Duty Cycling (RDC) layer.

Currently, Contiki provides two RDC protocols that follow the asynchronous paradigm, which

relies heavily on low-power probing and low-power listening (LPL). Conversely, synchronous

protocols rely on tightly synchronized clocks and predictably repeating events to minimize

wireless transmission collisions. This project introduces an existing synchronous protocol into

the newer Contiki environment and analyzes its performance compared to X-MAC and

ContikiMAC, the two asynchronous MAC protocols supported by the Contiki network stack.

This investigation is a continuation of a previous MQP (Major Qualifying Project) by

Worcester Polytechnic Institute students Bates & Keating [4]. They implemented several MAC

(Media Access Control) protocols for the TinyOS operating system. However, in recent years,

TinyOS has begun losing popularity in the research community. Starting from the Bates &

Keating implementation of Crankshaft in TinyOS on TelosB mote, this research updated this

power-aware MAC protocol to work in Contiki. When Bates & Keating tested their protocols,

they focused on minimizing WSN power consumption for three standard WSN communication

traffic patterns. However, while minimizing energy usage is a key factor in the design of WSN

MAC protocols, sensor message delay is also extremely important when assessing the overall

performance of a MAC protocol. For the purposes of this report, delay is intended to be

synonymous with latency.

The updated version of the Bates & Keating Crankshaft protocol developed for this

investigation and, called WPI-MAC in this report, was debugged, and tested in the Cooja

3

simulation environment for the Contiki operating system. Along with X-MAC and ContikiMAC,

WPI-MAC was evaluated on three different types of network traffic: broadcast, local gossip, and

convergecast. These tests were focused on measuring the power consumed by each protocol as

well as the average packet delay over a simulated 11-node one hop wireless sensor network.

4

2. Background

 This chapter provides definitions and explanation for several of the standard terms,

concepts and conventions used in the literature to explore current wireless sensor network

research. The chapter devotes sections to provide background information about Contiki, the

Cooja simulator and a brief review of the power-aware WSN MAC protocols that are important

in understanding where WPI-MAC fits within current WSN research.

2.1. Wireless Sensor Networks

 Wireless sensor networks (WSNs) can be defined as a collection of wireless sensors, also

known as motes intended to operate cooperatively via message transmissions to address one

specific application task. While the breadth of applicable WSN applications has expanded

considerably over the last decade, employing WSNs to monitor environmental conditions

remains as one of the most common and viable methods to undertake this challenging task.

Currently, motes are available for purchase from a few online electronics retailers for

approximately $140 USD. While the prices of these will likely continue to diminish as demand

increases, they are already cost effective enough for some businesses and researchers to begin

implementing them. These motes contain several sensors capable of monitoring conditions from

ambient light intensity to air temperature and moisture. Thanks to the inclusion of general

purpose I/O (GPIO) pins on most motes, these devices can also play host to virtually any other

variable resistor that a resourceful individual is willing to connect to them. In addition, they also

include a small microprocessor, some RAM, and a wireless radio all on a small printed circuit

board.

Unfortunately, the most appealing qualities of a sensor mote are also the ones which

make them challenging to develop software for. From a computer science perspective, the two

5

most challenging facets of coding software for a mote are their limited amounts of memory and

constant need to conserve energy. Much research has gone into techniques for minimizing the

amount of memory needed to operate a mote, but this project was significantly less concerned

with that challenge. However, this project addresses the mote’s need to converse as much power

as it possibly can. These devices are often powered by a pair of AA batteries and are expected to

sustain for several months at a time without replacement. Due to these strict power constraints, it

is important that the operating systems used by these devices are optimized to maximize the

device’s lifetime.

Former Worcester Polytechnic Institute students who tested four scheduled MAC

protocols (AS-MAC, SCP-MAC, Crankshaft, and BAS-MAC), found that certain protocols

worked better for different categories of traffic [5]. They came to the conclusion that wireless

sensor MAC protocols should be chosen based upon the application of the motes. In particular,

they found AS-MAC to perform best when used with local gossip and convergecast traffic and

SCP-MAC to dominate when it comes to broadcast traffic. As for the other two, Crankshaft and

BAS-MAC were found to be a decent compromise between the different traffic patterns [4].

2.2. Contiki

 Contiki is a relatively new open source operating system which “allows tiny, battery-

operated low-power systems [to] communicate with the Internet” [6]. Contiki was built primarily

by a researcher from the Swedish Institute of Computer Science, Adam Dunkels. While still

heavily involved with the project, the open source community has embraced his work and

continued to build upon his contributions. Contiki is special in that it is designed specifically to

accommodate for the limiting factors of motes in wireless sensor networks. By present-day

standards, the computational power of a mote is substantially less than that of a personal

6

computer. For example, the average mote is outfitted with an 8-bit microcontroller and tens of

kilobytes of RAM. It is with that in mind that Contiki was built to be incredibly lightweight [3].

 While initially not very popular, it is now starting to gain some traction in the wireless

sensor networking world due to the impressive list of features it has over its competitor, like

TinyOS. The fully-compliant IPv6 stack found in Contiki was certified (and contributed to) by

Cisco [6]. In addition to support for IPv6, Contiki also brings newer, low-power protocols like

6lowpan, RPL, and CoAP to its users. If a wireless sensor implementation does not need the full

IPv6 stack, users can elect to use Contiki’s lightweight Rime networking stack. This will break

compatibility with the traditional Internet, but can reduce resource utilization on the mote in

appropriate scenarios.

2.2.1. Differences from TinyOS

Up until a few years ago, TinyOS was the only wireless sensor operating system

available. Originally developed by a team of researchers from the University of California at

Berkeley, it is credited as being the first operating system specifically for wireless sensor

networks. Above all else, it strives to achieve the tiniest memory footprint possible. One of the

ways in which the developers achieved this was by electing to code the operating system in

nesC, a dialect of the C programming language. nesC is intended for use in small, embedded

networking devices and thus seems like a logical choice for a wireless sensor network operating

system. Among the modifications to C that can be found in nesC is the concept of split-phase

operations. Split-phase operations aim to eliminate blocking-wait calls which can seize control of

the processor and waste valuable CPU time, and thus power. Unlike traditional C, nesC divides

methods at the point where they invoke a lengthy system call. Due to this segmentation, the

developer now becomes responsible for writing callback methods which are executed upon the

7

completion of these system calls which are often unpredictable in duration. For example, if the

developer wishes to turn the wireless radio on, they invoke the on method for that radio and then

write the next part of their program logic in the radio’s onComplete callback method. This

callback method is automatically invoked once the hardware has reported that the wireless radio

has either been powered on or an error occurred while attempting to do so.

Contiki abandons nesC in favor of the standard C programming language and GNU

development tools. nesC, and thus TinyOS, require a modified set of tools in order to build the

operating system and user programs. This is just an added nuisance to the developer who now

must maintain a separate development environment when dealing with TinyOS. It is for that

reason that TinyOS is, by default, packaged and distributed as a virtual machine appliance. Of

course, a developer may elect to install the necessary nesC components themselves but this is

actually strongly discouraged by members of the TinyOS community. For the sake of

convenience Contiki is also released as a virtual machine variant, dubbed Instant Contiki.

2.2.2. The Radio Duty Cycling Layer

Strategies for minimizing the duty cycle of a radio are typically employed at the Media

Access Control (MAC) layer of the networking stack in an operating system. However, the

designers of Contiki recognized the importance of duty cycling and actually split the MAC layer

of their networking stack into two components: MAC drivers and RDC (Radio Duty Cycling)

drivers. A MAC driver in Contiki has the highly specific goal of detecting radio collisions (as

reported by lower layers) and utilizing the RDC driver to retransmit a packet that is known to be

lost. Currently, there is only one MAC driver in Contiki, CSMA (carrier sense multiple access).

The CSMA driver in Contiki maintains a buffer of packets bound for a fixed number of hosts.

For the sake of conserving memory, this is usually set to four. When the user-level process

8

wishes to send a packet, it gets sent to the CSMA layer first. This MAC driver places the packet

into a queue with other packets that are destined for the same recipient. The MAC layer then

submits the first packet in the queue to the lower RDC driver. It is the responsibility of the RDC

driver to ensure that the wireless transceiver remains powered off for as long as possible.

Therefore, it is also the RDC driver’s responsibility to make sure that the mote wakes up when it

needs to in order to send and listen for radio activity [7]. After attempting to send the packet, the

RDC driver invokes a callback method to the MAC driver indicating what happened to that

packet. If the packet was successfully sent, it gets removed from the MAC queue, otherwise it

stays and is scheduled for retransmission.

In order to develop a new RDC driver, one must implement several methods as defined by

the Contiki RDC driver interface, the most important being the initialization method, the send

method, and the incoming packet method. When the RDC send method is invoked by the MAC

driver, the MAC driver first ensures that the packet it intends to have sent is correctly loaded into

Contiki’s packetbuf mechanism. This mechanism is used to align the packet in a contiguous

region of memory and transfer that memory address to the appropriate radio register. Fortunately,

Contiki also provides the queuebuf mechanism which is capable of capturing all the state about

an outgoing packet if its transmission needs to be deferred in any way. This proved to be

extremely useful during the development of WPI-MAC.

2.3. Media Access Control Protocols

The protocols used in wireless sensor networking media access control can be classified

as either synchronous or asynchronous protocols. The term is in reference to when a mote

transmits a packet over the radio medium relative to when the program presents this packet for

9

transmission. These protocols attempt to balance power consumption with latency, often

sacrificing delay to achieve lower power consumption.

Asynchronous protocols are predominately used in Contiki due to the fact that the

developers have been able to demonstrate the diminished usefulness of synchronous MAC

protocols in wireless sensor networks [2]. The argument against this class of protocols is that

they are very susceptible to ide listening and overhearing. Idle listening is the condition in which

a wireless transceiver is powered on and listening to a radio medium in which no activity is

occurring. Overhearing refers to the reception of packets bound for another mote. For example,

while idly listening to a channel, Mote B overhears Mote A send a packet to Mote C. This is a

significant waste of energy because Mote B will immediately discard the packet it just spent

energy receiving.

2.3.1. Synchronous Protocols

Synchronous protocols typically divide time into subunits in which certain motes are

allowed to conduct radio operations. A program requesting to send a packet has no bearing on

when the RDC driver will actually transmit it over the air. Synchronous protocols schedule

actions in a predictable or cyclical fashion, rather than try to dynamically adjust to varying

conditions. A major benefit of a synchronous protocol is that it provides a guaranteed maximum

amount of time that a RDC driver will have to wait before transmitting its data. This factor helps

keep delay under control. Furthermore, allocating periods of time to specific actions can reduce

potential transmit and receive collisions. However it can also be problematic, as waking up a

mote when it has nothing to send or receive, known as idle listening, can be wasteful from an

energy perspective.

10

Being that synchronous protocols are time sensitive, they rely heavily on having their

clocks synchronized across nodes. This is accomplished through the use of control packets

introduced by the MAC protocols to ensure that clocks don’t drift away from a common

standard. Some protocols also utilize the control packet as a way of sharing scheduling data

among neighboring sensors. This is used in scenarios when a node wishes to advertise details

about its wakeup cycle to its neighbors. Its neighbors can then utilize this information to

intelligently decide when to attempt to contact that node. Crankshaft, and thus WPI-MAC, are

synchronous protocols which will be described in more detail later. While synchronous protocols

work well and are relatively easier to implement, they are not the only solution to this problem.

2.3.2. Asynchronous Protocols

Asynchronous protocols don’t concern themselves with clock drift and rigid timeslots.

Rather, they focus on being able to wake up on-demand and send whenever they please. There

are a few ways to go about accomplishing this, but a common tactic is to employ low-power

listening. Low-power listening (LPL) is a technique which a wireless transceiver can use to get a

sense of what is happening in the radio medium without having to continuously turn the radio on.

It can be thought of as a more energy efficient, but less reliable, clear channel assessment (CCA).

By measuring the received signal strength (RSSI) of the radio channel, the mote can infer

whether or not there is currently a radio transmission occurring. This is due to the fact that the

RSSI will spike when the radio hears another node transmitting.

 Asynchronous protocols will employ low-power listening in either a sender-initiated or

receiver-initiated fashion. In the sender-initiated model, when a node wishes to communicate

with others, it begins transmitting a series of strobe packets when it detects that the air is

available. These strobe packets are tiny and simply indicate to others that the sending node has a

11

larger packet to send. The other nodes periodically wakeup to listen if they detect a packet

transmission. If they detect a strobe, they analyze it to determine who the sender wishes to

communicate with. If the sender intends to send a packet to the node, the intended receiver will

remain on and send an acknowledgement (ACK) back to the sender, otherwise it goes to sleep.

When the sender receives the acknowledgement packet, it knows that it is now okay to transmit

the entire packet to its target.

One such protocol is ContikiMAC, included with Contiki as an RDC driver. ContikiMAC

makes a few alterations to the traditional asynchronous protocol. When a node wishes to send in

ContikiMAC, it simply begins transmitting the entire data packet until it receives an

acknowledgement [2]. This assures the sender that the recipient was awake and received its

transmission at the time it sent the data packet. After this exchange is completed, the nodes

quickly return to sleep. This protocol, however, behaves differently when broadcast traffic is

involved. In the event that a ContikiMAC node needs to transmit a broadcast packet, it will

repeatedly transmit the entire data packet for one entire period [2]. This ensures that no matter

when the other nodes’ wake up to check for activity, they will have all received the entire packet

at least once. Most notable about this approach is that ContikiMAC will continue to send the

packet even if all of the intended recipients have received it.

Receiver-initiated variants behave similarly, but the roles are somewhat reversed. Instead

of sending strobes when a node is ready to send, potential receivers will instead advertise that

they are eligible to receive packets. If a potential sender hears that its target is awake, it will

respond with an acknowledgment instructing the target to stay awake for its incoming

transmission, or simply send the packet.

12

X-MAC is a protocol from this category. Before transmitting a packet, X-MAC will send

out short preambles (“strobes”) naming the intended recipient of its pending transmission. Other

nodes in the network listen for this preamble and then quickly determine if they are the intended

target or not. If they are, they remain powered on and await the packet, if not they return to their

sleep state. At this point, a target node will send an ACK to the sender to signal the start of the

transmission. The sender dispatches the data packet as soon as it hears the acknowledgement as it

now knows there is a recipient awake and waiting for the packet [8]. In the Contiki

implementation of X-MAC broadcast messages are handled in a fashion similar to ContikiMAC.

Instead of sending strobes, a node wishing to send a broadcast transmission will simply send the

data packet repetitively for the duration of the period [9].

These types of protocols are significantly more challenging to implement but will

drastically reduce the problem of overhearing. However, unlike their synchronous counterparts,

they offer no guaranteed maximum delay. While they can be less wasteful in terms of energy, it

usually comes at the expense of increased latency.

2.4. Cooja: The Contiki Simulator

One of the major advantages to the Contiki operating system for sensor software

developers is the inclusion of the Cooja simulator environment. Cooja is a feature-rich simulator

which allows developers to virtually deploy an environment of motes and gather a host of

metrics about each one. Additionally, Cooja is capable of emulating several hardware platforms

that Contiki could be compiled for. Better yet, it can also simulate a wireless radio medium,

enabling developers to debug their applications and behave how they would function in a real-

world scenario. Perhaps most importantly for a project such as this, it is bundled with Instant

Contiki and is completely free of charge. For these reasons, all debugging and experimentation

13

for this project occurred in the Cooja simulator. Theoretically all results could be duplicated on

physical hardware, but due to time constraints could not be performed during the course of this

project

 Cooja enables the user to have control over a few parameters for the simulation

environment. To account for interference and packet loss, one can modify the quality of the radio

medium and even adjust, on a mote-by-mote basis, the probability with which that mote will

successfully send or receive a packet. Cooja also allows for a maximum mote startup delay to be

set along with a random seed. These parameters are used to calculate a random amount of time

that it will take each mote to complete its boot sequence and begin executing its program. This

accounts for the time that would be taken to connect each mote to a source of power. If all the

motes are being powered by AA batteries, the odds of them all being inserted by a human being

and booting at the same exact instant are slim.

To ease the development of some operating system components, like WPI-MAC, this can

be disabled so that all motes begin executing at the same exact moment in time. The settings

used for the development and testing of WPI-MAC are explained in greater detail later in this

report.

14

3. Implementation

The primary accomplishment of this investigation was the development of WPI-MAC, an

RDC driver for Contiki. This process presented an interesting set of challenges but also yielded a

deep understanding of the Contiki operating system. Perhaps the greatest hurdle in developing a

new RDC driver was gaining familiarity with the organization of the various networking

modules present in Contiki. The published documentation for Contiki is still in its infancy and

often fails to reflect the most current release of the operating system. The networking modules in

particular have changed drastically in the past few minor releases of Contiki, yet fail to be

described in the documentation. Fortunately, because Contiki is an open source project, one can

search through the source tree in order to answer questions that the documentation cannot.

To aid in development, Contiki includes a nullrdc driver, which is an RDC driver

containing everything required to compile the networking stack and nothing more. This RDC

driver actually does not perform any duty cycling and simply leaves the radio powered on at all

times. It provides the scaffolding necessary to build a new driver by providing templates for the

absolutely crucial methods that an RDC driver is expected to provide. These methods are utilized

by the operating system and executed in response to specific events. The most significant of

these events are triggered by system initialization, requests to power the radio down or turn it

back on, requests to send a packet, and the radio receiving a packet.

WPI-MAC began as a copy of the nullrdc driver and was developed from there. The most

important aspect of this driver was the rigid and precise time events that distinguish Crankshaft.

In Crankshaft, no node is ever permitted to transmit outside the bounds of its respective time slot.

Therefore it is imperative that each node in the network transitions to a new slot at the exact

same time. Contiki provides a handful of timer mechanisms, such as etimer and ctimer, which

15

can be preempted by other system events. Fortunately, the rtimer construct was recently added.

This new mechanism behaves like ctimer but is given precedence above all other components in

the system. Namely, when rtimer expires, its resulting callback method will preempt any other

running process [10].

The strategy with which rtimer is employed in WPI-MAC is straightforward: the timer is

used to signal the start of each transmission slot. When the timer expires, it begins executing the

advance_slot method. This method is responsible for scheduling the timer to begin again,

indicating the start of the next successive slot. Additionally, this method decides what the node

needs to accomplish during the time slot based on its hardware address and the identification

number of the current slot. This method is responsible for switching the wireless transceiver on

or off depending on the context. For example, the current slot may be the broadcast slot and the

node has no packets to send, but because it is the broadcast slot, the transceiver still needs to be

powered. Therefore this method will invoke the radio’s on method if it is not already active. If it

is the case that the node must use this slot to transmit a packet, then in this scenario, the method

also serves as a dispatch mechanism. This is achieved by checking WPI-MAC’s built-in queuing

system for any pending outbound packets. The queuing system is implemented as a first-in-first-

out linked list which is used to retain entire packets until they can be transmitted at an

appropriate later time. The majority of the queue manipulation occurs in the send_packet and

real_send methods.

Admittedly, the selection of the transmission window duration for this project was

arbitrary. It was intentionally set to be longer than necessary to help ensure that the protocol was

performing in accordance with the Crankshaft specification. While the protocol works as

16

intended, as shown later, it does suffer from high latencies and unnecessary idle listening that

could likely be reduced by adjusting this parameter.

The send_packet method is one that all Contiki RDC drivers must include. It is invoked

by higher layers of the Contiki networking stack wishing to send a packet to the radio, and

eventually, transmit to another node. The WPI-MAC variant provides scheduling for the

protocol. When send_packet is called, the method is provided with a pointer to the outbound

packet header and a callback method to be executed after attempting to send the packet. The

initial phase of send_packet allocates a queuebuf structure to house the header and payload of the

outbound packet. The contents of the packet are then encapsulated inside a WPI-MAC-specific

queue structure, and placed at the end of the appropriate queue. WPI-MAC maintains a global

array of these queues, each representing the collection of packets destined to be transmitted

during a specific slot. For example, the queue located at position zero in the array of queues

contains a linked list of the packets that need to be transmitted during the broadcast slot.

The real_send method is where the actual transmission of packets occurs. This is not

registered with the operating system like some of the other methods, but rather the method is

used internally by WPI-MAC’s scheduling system. When a new slot begins and advance_slot

determines that there is a pending outbound packet for the current slot, it invokes real_send. The

primary function of real_send is to copy the outbound packet from the WPI-MAC queue back to

the radio and attempt to transmit it over the radio medium. Before this can occur, the node must

win the contention period. Each time slot is divided into four relatively short contention

windows, followed by a longer message exchange window. As described previously, the node

will randomly choose one of these four contention windows beginning the transmission of the

17

filler packet. This differs from the original Crankshaft which employs a weighted probability

protocol called Sift to choose a contention window.

Four contention windows were chosen in order to provide a reasonably low rate of

collision without negatively impacting latency too profoundly, given the number of transmission

slots. The goal is to be the node that begins transmitting the soonest. If a node is attempting to

send during the current slot and hears another node transmitting its filler packet, it knows it has

lost the contention window and forfeits the message exchange window. In this scenario, the

packet’s callback method is invoked including its status, indicating that the packet could not be

transmitted due to congestion. If multiple nodes attempt to seize the same contention window,

they will interfere with each other and no nodes will have access to the message exchange

window; this is the worst case scenario. When this occurs, each node will report a failure when

calling its packet’s callback method. Optimally, one node will transmit its filler packet

Parameter Value

Transmission Slots 12

Broadcast Slots 1

Unicast Slots 11

Transmission Slot Duration 15 ms

Total Period Duration 180 ms

Contention Windows 4

Contention Window Duration 2 ms

Message Exchange Window 7 ms

Table 3.1 WPI-MAC Parameter Specification

18

uninterrupted and have exclusive access to the message exchange window. During that time, it

will proceed to transmit the original packet over the radio medium. Theoretically this attempt

should succeed due to the privilege that the node has earned to occupy the message exchange

window. Regardless of what transpires, the packet’s callback method is invoked along with its

resultant status.

Once the packet has been transmitted, the sender does not wait to receive a positive

acknowledgement (ACK) from the recipient. Due to the inclusion of the sender contention

mechanism and lack of receiver collisions offered by the Crankshaft model, it was decided that

ACKs would be superfluous and only serve to increase latency overall. Ultimately, the real_send

method is responsible for removing the packet from the internal queue collection in order to

avoid accidental retransmission.

For quick reference, Table 3.1 has been included to detail the most important parameters

related to WPI-MAC. It is worth noting that these parameters are not hard-coded into the driver

source code, but rather symbolically defined as preprocessor directives. Modifying one of these

symbols and recompiling Contiki will cause the updated value to take effect.

19

4. Methodology

Using the TinyOS version developed by Bates & Keating as inspiration, this project re-

implemented the Crankshaft MAC protocol without ACKs for the Contiki operating system. Due

to the more logical segmentation of media access control logic in Contiki, this implementation

was realized as a radio duty cycling driver. This RDC driver was compiled into Contiki as a Sky

mote firmware, which could then be flashed onto a virtual device inside the Cooja simulator.

4.1. Simulation Environment

As previously mentioned, all experimentation was conducted in the Cooja simulator. The

version used was the one bundled with Instant Contiki 2.6. The Instant Contiki image was run on

a virtual machine provided by Oracle’s VirtualBox 4.2 hypervisor. The host machine was

running the 64-bit edition of Windows 8 Pro powered by an Intel Core i7-3770K. The virtual

machine was allocated 3 GBs of RAM and two hyper-threaded CPU cores clocked at 3.5 GHz,

for a total of four logical processor cores. No modifications were made to the Instant Contiki

image and no operating system updates were applied to the bundled installation of Ubuntu.

The Cooja settings were left at their default values. For every simulation, the Unit Disk

Graph Medium was selected as the radio medium with a mote startup delay of 0ms. This was

done to ensure that all motes would start with a synchronized clock, which is important because

at present, WPI-MAC does not include a mechanism to prevent clock drift. Each simulation

consisted of 11 Sky motes all located within radio range of each other. As motes are placed about

the simulation environment, Cooja provides feedback about the probability that each node has of

successfully transmitting and receiving. All motes were placed within an area no greater than one

square meter and were indicated by Cooja to have a 100% change of successfully sending and

receiving data to all other motes in the simulation. The only aspect of the Sky platform that was

20

modified was the active RDC driver depending on the experiment. All simulations were allowed

to run for 10 minutes of simulated time, which was often less than the wall clock duration. To

facilitate easier replication, the firmware used on the virtual motes were only slightly modified

versions of the sample programs that come bundled with Contiki. The only change made to the

sample code was the inclusion of timestamps on the sending and receiving of packets, which was

done simply to make delay easier to calculate. In order to measure power consumption, the

project leveraged the tools included in Cooja to produce statistics regarding how much time the

mote radios spent in each state.

4.2. Tested MAC Protocols

In order to gauge how the reimplementation of Crankshaft (WPI-MAC) performed, it was

benchmarked against the two most popular RDC drivers in Contiki: ContikiMAC and X-MAC.

4.2.1. WPI-MAC

This project resulted in the development of a new synchronous MAC protocol based on

Crankshaft, tentatively named WPI-MAC, which was implemented as an RDC driver in the

Contiki operating system. The code left behind by Bates & Keating (which includes an

implementation of Crankshaft) was used as inspiration for this version. However, their drivers

were written in nesC for the TinyOS environment and needed to be adapted to work with

Contiki. The Crankshaft protocol gets its name from an internal combustion engine, comparing

the fixed wireless transmission slots that it gives to its receivers to the fixed offset between the

start of the rotation of a crankshaft and the moment that a piston fires. In Crankshaft, time is

divided into frames, which each can be thought of as a fixed period of time. Within every frame,

there are a fixed number of slots which are intended to be used as listening windows. Each slot is

either a broadcast slot or a unicast slot. For broadcast slots, all nodes in the neighborhood will

21

wake up to receive a broadcast message, regardless of whether or not there is one to be

transmitted. Conversely, a unicast slot is a period of time assigned to one specific node (by

hardware address) in which that node stays on to receive packets from neighboring sensors.

Within each slot, there is a brief contention window, followed by a much longer message

exchange window. When a sender wishes to send to another node, it must first “win” the

contention window in that specific node’s slot, and then send its message during the message

exchange window [11]. In an effort to reduce power consumption, nodes that are scheduled to

wake up in order to listen in WPI-MAC do not do so until after the contention window has

passed. As one would imagine, this protocol depends heavily on each node in the neighborhood

knowing the others’ schedule and having a synchronized clock mechanism. For the purposes of

this project, schedule synchronization and node initialization were assumed to have successfully

taken place ahead of time. Additionally, nodes will not enter or leave the neighborhood once the

simulation has begun.

While Crankshaft served as the basis for the new protocol, some minor modifications

were made. The new protocol does not adopt the Sift weighted-probability contention window

mechanism found in the original Crankshaft. In WPI-MAC, instead there are four small

contention windows which motes select with a random number generator. To increase

randomness, no truncation or ceiling functions were used. Instead the domain of the random

number generator was split into regions that corresponded to the contention slots. In WPI-MAC,

there are twelve transmission slots per period: one broadcast slot, followed by eleven unicast

receiving slots. This is to accommodate the simulation environment, in which there will be

eleven virtual motes: a base station and ten clients. Lastly in terms of assumptions and

modifications, WPI-MAC will only be concerned with single-hop environments. Requiring

22

nodes to keep track of scheduling for multiple neighborhoods could become rather memory

intensive. Furthermore, the complexity involved with implementing a multi-hop protocol is

beyond the scope of this project.

4.2.2. ContikiMAC and X-MAC

Currently, ContikiMAC and X-MAC are the two most popular RDC drivers in Contiki.

Both drivers perform relatively well and accomplish the goal of keeping their radios off most of

the time, but perhaps they are too similar to one another. Both of them are asynchronous

protocols built around the idea of low power listening. Low power listening is a mechanism that

can be used to detect if there is radio traffic within range of a transceiver without drawing too

much power. This essentially relies upon the radio’s ability to provide a Received Signal

Strength Indicator (RSSI), which should be significantly higher during times of radio activity.

The fundamental difference between ContikiMAC and X-MAC is that ContikiMAC is

sender-initiated while X-MAC is receiver-initiated. In ContikiMAC, when a node wants to send

a packet, it begins transmitting that packet repeatedly until it receives an acknowledgement from

another node (or some timeout condition is met). This acknowledgement indicates that the packet

has been successful received by the other node and allows the sender to go back to sleep [2].

Conversely, nodes wishing to send a packet using X-MAC are not permitted to send a packet

until knowing that there is another node awake and ready to receive the packet. This is

accomplished through the use of strobes which are essentially just short preambles. A sender will

start sending strobes repeatedly until it receives an acknowledgement from another node [8].

This allows the sender to transmit its packet over the radio medium knowing that there is an

extremely good chance of another node being awake to receive it. Upon the completion of

sending, the sender goes back to sleep.

23

These protocols are regarded as the two best available for Contiki by the Contiki

community of developers. Therefore they make excellent choices for evaluating the performance

of a new protocol.

4.3. Benchmarking Traffic Patterns

This investigation uses three different traffic patterns that well represent standard

applications of wireless sensor networks. It is important to note that across all of these tests, the

sample packets used were very small and not large enough to cause the packet to be separated

into multiple frames.

4.3.1. Broadcast

Broadcast traffic is defined as one node in the network transmitting a packet intended to

be received by all nodes in the network. This project used a modified version of the broadcast

example program found in the IPv6 samples directory in the Contiki source tree. The sample was

modified so that broadcasts were initiated once per second and only sent by the base station. The

payload of these broadcast packets simply contain the number 4, represented by a single

unsigned 8-bit integer. Thus the payload size for the broadcast packet is a single byte. By default,

the sample includes timestamps for when a node sends a packet and when it is received by the

other nodes. The difference between these two timestamps is calculated for each packet and then

averaged over the receiving nodes to determine the average latency for a given protocol.

4.3.2. Local Gossip/Unicast Conversations

Local gossip is defined here as multiple nodes in a network simultaneously having

unicast conversations with one another. For the experimentation portion of this project, I was

again able to leverage some of the included sample code to facilitate this test. The sample code

24

has each node randomly choose a conversation receiving partner (other than itself) for a unicast

message, sent at a random time over a ten second interval. The payload of this message is a 10-

byte ASCII string. Being that each node is simultaneously executing this test, it is possible that,

on occasion, multiple nodes will attempt to send to the same node. If anything, this is a more

rigorous test of a protocol as it is a scenario that is likely to occur in a real-world application.

4.3.3. Convergecast

Convergecast is defined as having all nodes in a network send unicast transmissions to a

single node. This node is often known as a base station or a sink. The test code used in this

project mimics the way wireless sensors are typically employed. The base station periodically

broadcasts a message to all the leaf nodes in the system once over a ten second period. At this

point, all of the leaf nodes then attempt to transmit a unicast message back to the sink

simultaneously, which is likely to be a source of contention amongst the leaf nodes. This

message contains a 32-byte snapshot of the current values of all the motes sensors as well as

some other data, such as the amount of time the node has been running. In an actual

implementation, the base station might be connected to an Internet web server. When a user

issues a request to the web server, the web server has the base station mote request the current

status of all the other sensors in the network and report their findings back. The reported values

are then served to the web server and back out over the Internet.

25

5. Results

5.1. Broadcast

 The broadcast test exposes a significant flaw in WPI-MAC: when all the traffic occurs

during a single transmission window, the nodes encounter substantial idle listening. Idle listening

is the wasteful condition that occurs when a wireless transceiver is fully powered and listening to

a radio channel on which no activity is occurring. Figures 5.1-5.3 represent the output of Cooja’s

PowerTracker tool. This tool provides a per-mote summary of the amount of time that the

wireless transceivers were in a particular state. The ‘Radio on’ statistic expresses the percentage

of the total simulation time that the mote spent with its wireless transceiver fully powered; this is

inclusive of time spent sending transmitting or receiving data as well as idle listening. Similarly,

the ‘Radio TX’ and ‘Radio RX’ represent the percentage of total simulation duration spent

transmitting or receiving packets, respectively. The ‘Radio RX’ percentage includes any

overhearing that may occur as it is simply a measure of the amount of time the transceiver spent

receiving a packet, regardless of the packet’s intended recipient. For these tests, ‘Mote 1’ acted

as the base station that was transmitting the broadcast messages; all other motes were receiving.

As illustrated in 5.1 and 5.2, the asynchronous protocols are able to achieve low power-

on times for the receivers, but at the cost of a disproportionately high usage on the part of the

sender. The results for X-MAC and ContikiMAC are extremely similar except X-MAC requires

roughly four times the amount of power to accomplish the same task. The WPI-MAC results do

not vary as drastically from sender to receiver.

26

Figures 5.4-5.6 are screenshots from Cooja’s timeline tool which are intended to provide

a visual representation of the behavior of the wireless transceiver. Each row is numbered and

represents a different mote. The grey lines indicate that the radio was powered on and idly

listening to the medium, while blue and green marks respectively indicate the sending and

receiving of packets. These screenshots are samples of what the timeline displayed during the

transmission of a single broadcast packet.

Figure 5.1: X-MAC Radio Duty Cycling Data – Broadcast Test

Figure 5.2: ContikiMAC Duty Cycling Data – Broadcast Test Figure 5.3: WPI-MAC Duty Cycling Data – Broadcast Test

27

In order to more accurately evaluate the performance of these protocols, one must also

consider the latency experienced by packets in the system. Table 5.1 shows the average latency

for broadcast packets transmitted using each of the protocols. The latencies shown here do not

account for delays due to retransmissions. Furthermore, they do not include the exchange of

ACKs that may take place after the message has been successfully received. Shown below is

simply an average measure between the time when the program submitted its packet to the MAC

layer for transmission and the time in which that same packet was received by its intended target.

Figure 5.4: WPI-MAC Cooja Timeline – Broadcast Test

Figure 5.5: X-MAC Cooja Timeline – Broadcast Test

Figure 5.6: ContikiMAC Cooja Timeline – Broadcast Test

 ContikiMAC X-MAC WPI-MAC

Latency (ms) 91 104 111

Table 5.1: Average Latency by Protocol – Broadcast Test

28

While WPI-MAC did not perform as well as the asynchronous protocols in this test, the

figures above help to illustrate how the protocol could be optimized for this scenario. The

unutilized unicast transmission slots are the cause of the higher latency experienced by WPI-

MAC, but because they are so rigidly defined, they allow WPI-MAC to offer the most consistent

latency measurements. Reducing the number of transmission slots in WPI-MAC would help

reduce delay, but would also cause the motes to wake up more frequently, thus consuming more

energy. This exemplifies the stereotypical tradeoff between energy and latency that exists in the

world of MAC protocols

5.2. Local Gossip

The results of the local gossip test were fairly similar when it came to power

consumption. Figures 5.7-5.9 below also illustrate the amount of time each protocol kept the

transceiver in a particular power state during the test period. The Cooja PowerTracker highlights

the mote with the highest level of power consumption in red, though due to internal rounding this

may not be obvious.

Figure 5.7: WPI-MAC Duty Cycling Data – Local Gossip Test

29

 Most notably, the duty cycling figures demonstrate that ContikiMAC is exceptional at

keeping power consumption low for this type of traffic. Meanwhile, X-MAC yielded rather

sporadic results and was only marginally more conservative than WPI-MAC on the whole. WPI-

MAC again offers more consistent and uniform performance due to the rigid timing of the

Crankshaft model. Below, figures 5.10-5.12 depict interesting moments from the testing of each

protocol.

Figure 5.8: X-MAC Duty Cycling Data – Local Gossip Test Figure 5.9: ContikiMAC Duty Cycling Data – Local Gossip Test

Figure 5.10: WPI-MAC Cooja Timeline – Local Gossip Test

Figure 5.11: X-MAC Cooja Timeline – Local Gossip Test

30

Figure 5.10 depicts nodes 11 and 9 vying for contention over node 5’s unicast receiving

window. Node 11 starts transmitting sooner than 9 does, causing 9 to back off and not attempt to

send. As a result, 9 is awake to overhear the packet bound for 5, but this packet is discarded by 9

as it is not the intended recipient. Figure 5.11 illustrates how X-MAC comes away with such

high radio utilization. The radio medium becomes extremely congested by X-MAC’s excessive

transmission of strobe packets and dependence on ACKs. ContikiMAC’s early ACK and fast-

sleep optimizations are cause for a much calmer state of affairs in Figure 5.12. However,

ContikiMAC does experience some packet collisions (represented by the red blocks) when two

nodes attempt to transmit concurrently. Once again, WPI-MAC consumes more energy overall

than the other two protocols. But how does it compare in terms of latency? The table below

shows the average latency of the three protocols during this test.

Unlike the previous test, ContikiMAC is actually the clear winner for this category of

traffic. Not only does it use significantly less energy than the other two, it also experiences the

lowest latencies of the group. While WPI-MAC did not fare too well in terms of power

consumption, it could be a decent alternative to X-MAC if the application was highly latency

Figure 5.12: ContikiMAC Cooja Timeline – Local Gossip Test

 ContikiMAC X-MAC WPI-MAC

Latency (ms) 111 423 134

Table 5.2: Average Latency by Protocol – Local Gossip Test

31

dependent. In fact, X-MAC does not perform well at all under these conditions. This is likely

attributed to collisions that occur when multiple unicast senders are transmitting their entire

packets over the radio medium while multiple receivers are simultaneously attempting to

announce their availability to receive. Such an occurrence would cause X-MAC to attempt the

transmission again later, when it would likely encounters the same problem at least a few times

before successfully sending a packet.

5.3. Convergecast

The results for the convergecast tests bear slight resemblance to the local gossip results.

They both share the common trait of attempting to, at times, transmit multiple unicast messages

to a single node. Once more, Figures 5.13-5.15 below depict the amount of time that each

protocol kept its motes’ transceivers in a powered state. The red highlights are simply intended to

draw attention to the mote with the highest radio usage.

Figure 5.13: WPI-MAC Duty Cycling Data – Convergecast Test

32

 The nodes were instructed to send a small packet back to the base station once every 10

seconds. As in prior tests, node 1 served as the base station. As per usual, ContikiMAC managed

to achieve the lowest energy consumption of the group, while WPI-MAC’s utilization was higher

but more consistent. However, X-MAC faired significantly better in this trial than it did during

the local gossip test. This behavior is to be expected, as only one unicast receiver is attempting to

initiate a transmission, unlike the local gossip trial.

Figure 5.14: X-MAC Duty Cycling Data – Convergecast Test Figure 5.15: ContikiMAC Duty Cycling Data – Convergecast Test

Figure 5.16: WPI-MAC Cooja Timeline – Convergecast Test

33

Figures 5.16 - 5.18 reflect interesting moments from the trials. The WPI-MAC base station is

unfortunately limited to receiving one unicast message per period. Figure 5.16 illustrates this gap

and helps to explain the increased latency exhibited in Table 5.3. X-MAC again proves it can

clutter the radio medium for a long time when faced with multiple unicast transmissions. The

frequent need for retransmissions attributes to the poor delay experienced by this protocol.

Lastly, ContikiMAC demonstrates that even by waking its motes up frequently, it can conserve

more energy by being able to swiftly power them off again.

Not surprisingly, ContikiMAC is again the clear victor in this test. However, WPI-MAC

continues to offer lower latencies than X-MAC but at twice the energy cost. At this point it is

Figure 5.17: X-MAC Cooja Timeline – Convergecast Test

Figure 5.18: ContikiMAC Cooja Timeline – Convergecast Test

 ContikiMAC X-MAC WPI-MAC

Latency (ms) 131 274 173

Table 5.3: Average Latency by Protocol – Convergecast Test

34

clear that X-MAC does not perform very well under these conditions and should be avoided if

latency is a factor.

35

6. Conclusions

 Ultimately, there is still plenty of room for growth and additional research in the field of

wireless sensor networks. While WPI-MAC does not perform better than ContikiMAC in any

scenario tested during this investigation, it does, at times, fare better than X-MAC in regard to

latency. However, the tests performed in this experiment do not adequately exercise scenarios in

which WPI-MAC would be advantageous. It would be interesting to see how WPI-MAC

performed with the inclusion of the proposed changes in the follow chapter.

 In the case of wireless sensor networks, choosing a MAC protocol will almost always be

dependent on the application of that particular system. Of course, protocols can always be

adapted and tuned to perform better in certain situations. Though perhaps the community as a

whole can benefit from the existence of several varied and specialized protocols.

36

7. Future Work

7.1.1. Support Multi-hop Traffic

Although not exercised by the preliminary tests conducted in this investigation, one of the

major benefits to choosing ContikiMAC is its ability to relay packets across multiple sensor

neighborhoods. In order to be viewed as a more serious contender to ContikiMAC, WPI-MAC

would also have to support this same multi-hop functionality. In ContikiMAC, nodes function as

sleepy routers, which are capable of waking up to relay a packet to another neighborhood and

then quickly return to sleep. Duplicating this behavior in WPI-MAC would be challenging due to

the need for multi-clock synchronization.

7.1.2. Fast Sleep Optimization

Presently, the transmission slot length in this implementation of WPI-MAC is too long.

Reducing the duration of the slot could help combat excessive idle listening. As soon as a

recipient node has successfully received, there is no need for it to leave its transceiver powered.

In the current version of the driver, the node remains awake until the next transmission slot

begins (which subsequently triggers the transceiver’s shutdown method).

Additionally, the current behavior for a unicast or broadcast receiver is to wake up after

the contention windows. If the receiver(s) woke up at the start of the contention windows, they

could immediately go back to sleep if they detect no filler packet being transmitted before the

message exchange window. This change would also have no impact on delay, but would help to

conserve energy through the drastic minimization of idle listening.

37

7.1.3. Dynamically Accommodate Varying Population Size

In its current state, WPI-MAC does not support nodes joining or leaving after the initial

setup period. This is another area in which ContikiMAC and X-MAC currently outperform it as

they are significantly more flexible in this regard. This would be accomplished through the use

of control packets that would be used to inform new nodes of the current state of the network.

7.1.4. Selective Omission of Broadcast Slot

It is possible that WPI-MAC could reduce a portion of the energy wasted to over-hearing

by allowing for the broadcast slot to be omitted during certain cycles. The protocol would

declare ahead of time how frequently there would be a broadcast window. For example, by

including a broadcast window only once every ten periods, this would help to keep more

transceivers off for longer durations of time. However, in situations that experience heavy

broadcast traffic, this could further increase the delay of such traffic types. Although in scenarios

with low volumes of broadcast traffic, removing an entire transmission slot could slightly reduce

latency.

7.1.5. Additional Testing With Larger Packets

The programs used to test these protocols all used very short packet payloads, none of

them larger than 32 bytes. As a result, some of the protocols may behave differently when given

larger packets to transmit. It is predicted that WPI-MAC would suffer higher delays than the

ContikiMAC, which includes a mechanism for bulk transfer. This highly specific optimization

allows a node to send multiple packets in rapid succession, something that currently cannot be

achieved with WPI-MAC.

38

References

[1] Crossbow Technology, Inc., "TelosB Mote Platform Data Sheet," [Online]. Available:

http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.p

df.

[2] A. Dunkels, "The ContikiMAC Radio Duty Cycling Protocol," SICS Technical Report, vol.

T2011, no. 13, pp. 1-11, 2011.

[3] A. Dunkels, B. Gronvall and T. Voigt, "Contiki - a Lightweight and Flexible Operating

System for Tiny Networked Sensors," in Proceedings of the First IEEE Workshop on

Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA, 2004.

[4] B. Bates, A. Keating and R. Kinicki, "Energy Analysis of Four Wireless Sensor Network

MAC Protocols," Worcester Polytechnic Institute, pp. 1-6, 2009.

[5] B. Bates, A. Keating and R. Kinicki, "Energy analysis of four wireless sensor network

MAC protocols," in 6th International Symposium on Wireless and Pervasive Computing

(ISWPC), Hong Kong, 2011.

[6] The Contiki Project, "Contiki: The Open Source Operating System For The Internet Of

Things," July 2012. [Online]. Available: http://www.contiki-os.org/. [Accessed 11

December 2012].

[7] A. Dunkels, "Change MAC or Radio Duty Cycling Protocols," 27 November 2011.

[Online]. Available:

http://www.sics.se/contiki/wiki/index.php/Change_MAC_or_Radio_Duty_Cycling_Protoc

ols. [Accessed 17 September 2012].

39

[8] S. Zacharias and T. Newe, "Competition at the Wireless Sensor Network MAC Layer: Low

Power Probing interfering with X-MAC," Journal of Physics: Conference Series, vol. XVI,

no. 307, pp. 1-6, 2011.

[9] A. Dunkels, "Radio duty cycling: The Contiki X-MAC," December 2012. [Online].

Available: https://github.com/contiki-os/contiki/wiki/Radio-duty-cycling#wiki-

The_Contiki_XMAC. [Accessed 3 January 2013].

[10] The Contiki Project, "Contiki 2.6 Documentation," [Online]. Available:

http://contiki.sourceforge.net/docs/2.6/a01787.html.

[11] G. P. Halkes and K. G. Langendoen, "Crankshaft: An Energy-Efficient MAC-Protocol for

Dense Wireless Sensor Networks," Lecture Notes in Computer Science, vol. 4373, pp. 228-

244, 2007.

[12] S. Pratapa, "Improving latency in Crankshaft - An energy-aware MAC protocol for

Wireless Sensor Networks," Worcester Polytechnic Institute, 2009.

