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Abstract 

Contiki, a lightweight operating system for wireless sensor networks (WSNs), utilizes 

Radio Duty Cycling (RDC) to conserve sensor battery power. This project implemented and 

evaluated WPI-MAC, a reimplementation of the Crankshaft Media Access Control (MAC) 

protocol. Implemented as a new RDC driver within the Cooja simulator, WPI-MAC was 

compared via simulation against: ContikiMAC and X-MAC. Preliminary results indicate that 

under three common WSN traffic patterns ContikiMAC outperforms WPI-MAC in terms of 

energy efficiency and delay, but WPI-MAC yields lower average delays compared to X-MAC. 
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1. Introduction  

Wireless sensor networks (WSNs) are a relatively new field of research in computer 

science with many broad and exciting possible applications. WSNs monitor the structural 

integrity of bridges, observe tidal conditions, measure air quality, and even detect disasters like 

fires and landslides. These networks are made up of nodes, known as motes, which generally 

consist of a power source, wireless radio, microcontroller, and array of sensors. The mote 

networks are often deployed in harsh environments where it is not feasible to attach them to a 

source of constant power. This limitation makes it imperative to manage the limited supply of 

energy to these motes in a highly efficient manner. The mote wireless transceiver is often the 

most wasteful in terms of energy consumption and efficiency. The TelosB platform is a popular 

hardware standard for wireless sensors. While the TelosB unit is active, the processor draws a 

current of 1.8 milliamperes and the wireless transceiver draws 23 milliamperes [1]. 

 Managing a wireless transceiver in an energy efficient manner in a mote is inherently 

challenging due to its very nature: it needs to be powered in order to transmit or receive packets. 

Furthermore, depending on the application, the mote may utilize its transceiver in an 

unpredictable fashion. A wireless transceiver consumes nearly the same amount of power while 

passively listening for messages over the air as when actively sending data [1]. Therefore, the 

only approach to limiting the power consumption of a transceiver is to power it off entirely [2]. 

Unfortunately, this introduces an entirely different set of problems related to reliable 

communication between multiple nodes. To combat these issues, Media Access Control (MAC) 

developers utilize a strategy known as duty cycling in WSNs to intelligently regulate when a 

mote’s wireless transceiver is in the active power state. 
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Contiki is a recently developed open source operating system intended for use within 

wireless sensor networks [3]. Traditionally, duty cycling mechanisms are built into the MAC 

layer of the operating system’s networking stack. Contiki, however, employs duty cycling tactics 

in a separate level of the networking stack known as the Radio Duty Cycling (RDC) layer.  

Currently, Contiki provides two RDC protocols that follow the asynchronous paradigm, which 

relies heavily on low-power probing and low-power listening (LPL). Conversely, synchronous 

protocols rely on tightly synchronized clocks and predictably repeating events to minimize 

wireless transmission collisions. This project introduces an existing synchronous protocol into 

the newer Contiki environment and analyzes its performance compared to X-MAC and 

ContikiMAC, the two asynchronous MAC protocols supported by the Contiki network stack. 

This investigation is a continuation of a previous MQP (Major Qualifying Project) by 

Worcester Polytechnic Institute students Bates & Keating [4]. They implemented several MAC 

(Media Access Control) protocols for the TinyOS operating system. However, in recent years, 

TinyOS has begun losing popularity in the research community.  Starting from the Bates & 

Keating implementation of Crankshaft in TinyOS on TelosB mote, this research updated this 

power-aware MAC protocol to work in Contiki. When Bates & Keating tested their protocols, 

they focused on minimizing WSN power consumption for three standard WSN communication 

traffic patterns. However, while minimizing energy usage is a key factor in the design of WSN 

MAC protocols, sensor message delay is also extremely important when assessing the overall 

performance of a MAC protocol. For the purposes of this report, delay is intended to be 

synonymous with latency. 

The updated version of the Bates & Keating Crankshaft protocol developed for this 

investigation and, called WPI-MAC in this report, was debugged, and tested in the Cooja 
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simulation environment for the Contiki operating system. Along with X-MAC and ContikiMAC, 

WPI-MAC was evaluated on three different types of network traffic: broadcast, local gossip, and 

convergecast. These tests were focused on measuring the power consumed by each protocol as 

well as the average packet delay over a simulated 11-node one hop wireless sensor network. 
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2. Background 

 This chapter provides definitions and explanation for several of the standard terms, 

concepts and conventions used in the literature to explore current wireless sensor network 

research. The chapter devotes sections to provide background information about Contiki, the 

Cooja simulator and a brief review of the power-aware WSN MAC protocols that are important 

in understanding where WPI-MAC fits within current WSN research.  

2.1. Wireless Sensor Networks 

 Wireless sensor networks (WSNs) can be defined as a collection of wireless sensors, also 

known as motes intended to operate cooperatively via message transmissions to address one 

specific application task. While the breadth of applicable WSN applications has expanded 

considerably over the last decade, employing WSNs to monitor environmental conditions 

remains as one of the most common and viable methods to undertake this challenging task. 

Currently, motes are available for purchase from a few online electronics retailers for 

approximately $140 USD. While the prices of these will likely continue to diminish as demand 

increases, they are already cost effective enough for some businesses and researchers to begin 

implementing them. These motes contain several sensors capable of monitoring conditions from 

ambient light intensity to air temperature and moisture. Thanks to the inclusion of general 

purpose I/O (GPIO) pins on most motes, these devices can also play host to virtually any other 

variable resistor that a resourceful individual is willing to connect to them. In addition, they also 

include a small microprocessor, some RAM, and a wireless radio all on a small printed circuit 

board. 

Unfortunately, the most appealing qualities of a sensor mote are also the ones which 

make them challenging to develop software for. From a computer science perspective, the two 
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most challenging facets of coding software for a mote are their limited amounts of memory and 

constant need to conserve energy. Much research has gone into techniques for minimizing the 

amount of memory needed to operate a mote, but this project was significantly less concerned 

with that challenge. However, this project addresses the mote’s need to converse as much power 

as it possibly can. These devices are often powered by a pair of AA batteries and are expected to 

sustain for several months at a time without replacement. Due to these strict power constraints, it 

is important that the operating systems used by these devices are optimized to maximize the 

device’s lifetime. 

Former Worcester Polytechnic Institute students who tested four scheduled MAC 

protocols (AS-MAC, SCP-MAC, Crankshaft, and BAS-MAC), found that certain protocols 

worked better for different categories of traffic [5]. They came to the conclusion that wireless 

sensor MAC protocols should be chosen based upon the application of the motes. In particular, 

they found AS-MAC to perform best when used with local gossip and convergecast traffic and 

SCP-MAC to dominate when it comes to broadcast traffic. As for the other two, Crankshaft and 

BAS-MAC were found to be a decent compromise between the different traffic patterns [4]. 

2.2. Contiki 

 Contiki is a relatively new open source operating system which “allows tiny, battery-

operated low-power systems [to] communicate with the Internet” [6]. Contiki was built primarily 

by a researcher from the Swedish Institute of Computer Science, Adam Dunkels. While still 

heavily involved with the project, the open source community has embraced his work and 

continued to build upon his contributions. Contiki is special in that it is designed specifically to 

accommodate for the limiting factors of motes in wireless sensor networks. By present-day 

standards, the computational power of a mote is substantially less than that of a personal 
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computer. For example, the average mote is outfitted with an 8-bit microcontroller and tens of 

kilobytes of RAM. It is with that in mind that Contiki was built to be incredibly lightweight [3]. 

 While initially not very popular, it is now starting to gain some traction in the wireless 

sensor networking world due to the impressive list of features it has over its competitor, like 

TinyOS. The fully-compliant IPv6 stack found in Contiki was certified (and contributed to) by 

Cisco [6]. In addition to support for IPv6, Contiki also brings newer, low-power protocols like 

6lowpan, RPL, and CoAP to its users. If a wireless sensor implementation does not need the full 

IPv6 stack, users can elect to use Contiki’s lightweight Rime networking stack. This will break 

compatibility with the traditional Internet, but can reduce resource utilization on the mote in 

appropriate scenarios. 

2.2.1. Differences from TinyOS 

Up until a few years ago, TinyOS was the only wireless sensor operating system 

available. Originally developed by a team of researchers from the University of California at 

Berkeley, it is credited as being the first operating system specifically for wireless sensor 

networks. Above all else, it strives to achieve the tiniest memory footprint possible. One of the 

ways in which the developers achieved this was by electing to code the operating system in 

nesC, a dialect of the C programming language. nesC is intended for use in small, embedded 

networking devices and thus seems like a logical choice for a wireless sensor network operating 

system. Among the modifications to C that can be found in nesC is the concept of split-phase 

operations. Split-phase operations aim to eliminate blocking-wait calls which can seize control of 

the processor and waste valuable CPU time, and thus power. Unlike traditional C, nesC divides 

methods at the point where they invoke a lengthy system call. Due to this segmentation, the 

developer now becomes responsible for writing callback methods which are executed upon the 
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completion of these system calls which are often unpredictable in duration. For example, if the 

developer wishes to turn the wireless radio on, they invoke the on method for that radio and then 

write the next part of their program logic in the radio’s onComplete callback method. This 

callback method is automatically invoked once the hardware has reported that the wireless radio 

has either been powered on or an error occurred while attempting to do so. 

Contiki abandons nesC in favor of the standard C programming language and GNU 

development tools. nesC, and thus TinyOS, require a modified set of tools in order to build the 

operating system and user programs. This is just an added nuisance to the developer who now 

must maintain a separate development environment when dealing with TinyOS. It is for that 

reason that TinyOS is, by default, packaged and distributed as a virtual machine appliance. Of 

course, a developer may elect to install the necessary nesC components themselves but this is 

actually strongly discouraged by members of the TinyOS community. For the sake of 

convenience Contiki is also released as a virtual machine variant, dubbed Instant Contiki.  

2.2.2. The Radio Duty Cycling Layer 

Strategies for minimizing the duty cycle of a radio are typically employed at the Media 

Access Control (MAC) layer of the networking stack in an operating system. However, the 

designers of Contiki recognized the importance of duty cycling and actually split the MAC layer 

of their networking stack into two components: MAC drivers and RDC (Radio Duty Cycling) 

drivers. A MAC driver in Contiki has the highly specific goal of detecting radio collisions (as 

reported by lower layers) and utilizing the RDC driver to retransmit a packet that is known to be 

lost.  Currently, there is only one MAC driver in Contiki, CSMA (carrier sense multiple access). 

The CSMA driver in Contiki maintains a buffer of packets bound for a fixed number of hosts. 

For the sake of conserving memory, this is usually set to four. When the user-level process 
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wishes to send a packet, it gets sent to the CSMA layer first. This MAC driver places the packet 

into a queue with other packets that are destined for the same recipient. The MAC layer then 

submits the first packet in the queue to the lower RDC driver. It is the responsibility of the RDC 

driver to ensure that the wireless transceiver remains powered off for as long as possible. 

Therefore, it is also the RDC driver’s responsibility to make sure that the mote wakes up when it 

needs to in order to send and listen for radio activity [7]. After attempting to send the packet, the 

RDC driver invokes a callback method to the MAC driver indicating what happened to that 

packet. If the packet was successfully sent, it gets removed from the MAC queue, otherwise it 

stays and is scheduled for retransmission.  

In order to develop a new RDC driver, one must implement several methods as defined by 

the Contiki RDC driver interface, the most important being the initialization method, the send 

method, and the incoming packet method. When the RDC send method is invoked by the MAC 

driver, the MAC driver first ensures that the packet it intends to have sent is correctly loaded into 

Contiki’s packetbuf mechanism. This mechanism is used to align the packet in a contiguous 

region of memory and transfer that memory address to the appropriate radio register. Fortunately, 

Contiki also provides the queuebuf mechanism which is capable of capturing all the state about 

an outgoing packet if its transmission needs to be deferred in any way. This proved to be 

extremely useful during the development of WPI-MAC. 

2.3. Media Access Control Protocols 

The protocols used in wireless sensor networking media access control can be classified 

as either synchronous or asynchronous protocols. The term is in reference to when a mote 

transmits a packet over the radio medium relative to when the program presents this packet for 
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transmission. These protocols attempt to balance power consumption with latency, often 

sacrificing delay to achieve lower power consumption. 

Asynchronous protocols are predominately used in Contiki due to the fact that the 

developers have been able to demonstrate the diminished usefulness of synchronous MAC 

protocols in wireless sensor networks [2]. The argument against this class of protocols is that 

they are very susceptible to ide listening and overhearing. Idle listening is the condition in which 

a wireless transceiver is powered on and listening to a radio medium in which no activity is 

occurring. Overhearing refers to the reception of packets bound for another mote. For example, 

while idly listening to a channel, Mote B overhears Mote A send a packet to Mote C. This is a 

significant waste of energy because Mote B will immediately discard the packet it just spent 

energy receiving. 

2.3.1. Synchronous Protocols 

Synchronous protocols typically divide time into subunits in which certain motes are 

allowed to conduct radio operations. A program requesting to send a packet has no bearing on 

when the RDC driver will actually transmit it over the air. Synchronous protocols schedule 

actions in a predictable or cyclical fashion, rather than try to dynamically adjust to varying 

conditions. A major benefit of a synchronous protocol is that it provides a guaranteed maximum 

amount of time that a RDC driver will have to wait before transmitting its data. This factor helps 

keep delay under control. Furthermore, allocating periods of time to specific actions can reduce 

potential transmit and receive collisions. However it can also be problematic, as waking up a 

mote when it has nothing to send or receive, known as idle listening, can be wasteful from an 

energy perspective. 
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Being that synchronous protocols are time sensitive, they rely heavily on having their 

clocks synchronized across nodes. This is accomplished through the use of control packets 

introduced by the MAC protocols to ensure that clocks don’t drift away from a common 

standard. Some protocols also utilize the control packet as a way of sharing scheduling data 

among neighboring sensors. This is used in scenarios when a node wishes to advertise details 

about its wakeup cycle to its neighbors. Its neighbors can then utilize this information to 

intelligently decide when to attempt to contact that node. Crankshaft, and thus WPI-MAC, are 

synchronous protocols which will be described in more detail later. While synchronous protocols 

work well and are relatively easier to implement, they are not the only solution to this problem. 

2.3.2. Asynchronous Protocols 

Asynchronous protocols don’t concern themselves with clock drift and rigid timeslots. 

Rather, they focus on being able to wake up on-demand and send whenever they please. There 

are a few ways to go about accomplishing this, but a common tactic is to employ low-power 

listening. Low-power listening (LPL) is a technique which a wireless transceiver can use to get a 

sense of what is happening in the radio medium without having to continuously turn the radio on. 

It can be thought of as a more energy efficient, but less reliable, clear channel assessment (CCA). 

By measuring the received signal strength (RSSI) of the radio channel, the mote can infer 

whether or not there is currently a radio transmission occurring. This is due to the fact that the 

RSSI will spike when the radio hears another node transmitting. 

 Asynchronous protocols will employ low-power listening in either a sender-initiated or 

receiver-initiated fashion. In the sender-initiated model, when a node wishes to communicate 

with others, it begins transmitting a series of strobe packets when it detects that the air is 

available. These strobe packets are tiny and simply indicate to others that the sending node has a 
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larger packet to send. The other nodes periodically wakeup to listen if they detect a packet 

transmission. If they detect a strobe, they analyze it to determine who the sender wishes to 

communicate with. If the sender intends to send a packet to the node, the intended receiver will 

remain on and send an acknowledgement (ACK) back to the sender, otherwise it goes to sleep. 

When the sender receives the acknowledgement packet, it knows that it is now okay to transmit 

the entire packet to its target. 

One such protocol is ContikiMAC, included with Contiki as an RDC driver. ContikiMAC 

makes a few alterations to the traditional asynchronous protocol. When a node wishes to send in 

ContikiMAC, it simply begins transmitting the entire data packet until it receives an 

acknowledgement [2]. This assures the sender that the recipient was awake and received its 

transmission at the time it sent the data packet. After this exchange is completed, the nodes 

quickly return to sleep. This protocol, however, behaves differently when broadcast traffic is 

involved. In the event that a ContikiMAC node needs to transmit a broadcast packet, it will 

repeatedly transmit the entire data packet for one entire period [2]. This ensures that no matter 

when the other nodes’ wake up to check for activity, they will have all received the entire packet 

at least once. Most notable about this approach is that ContikiMAC will continue to send the 

packet even if all of the intended recipients have received it. 

Receiver-initiated variants behave similarly, but the roles are somewhat reversed. Instead 

of sending strobes when a node is ready to send, potential receivers will instead advertise that 

they are eligible to receive packets. If a potential sender hears that its target is awake, it will 

respond with an acknowledgment instructing the target to stay awake for its incoming 

transmission, or simply send the packet. 
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X-MAC is a protocol from this category. Before transmitting a packet, X-MAC will send 

out short preambles (“strobes”) naming the intended recipient of its pending transmission. Other 

nodes in the network listen for this preamble and then quickly determine if they are the intended 

target or not. If they are, they remain powered on and await the packet, if not they return to their 

sleep state. At this point, a target node will send an ACK to the sender to signal the start of the 

transmission. The sender dispatches the data packet as soon as it hears the acknowledgement as it 

now knows there is a recipient awake and waiting for the packet [8]. In the Contiki 

implementation of X-MAC broadcast messages are handled in a fashion similar to ContikiMAC. 

Instead of sending strobes, a node wishing to send a broadcast transmission will simply send the 

data packet repetitively for the duration of the period [9]. 

These types of protocols are significantly more challenging to implement but will 

drastically reduce the problem of overhearing. However, unlike their synchronous counterparts, 

they offer no guaranteed maximum delay. While they can be less wasteful in terms of energy, it 

usually comes at the expense of increased latency. 

2.4. Cooja: The Contiki Simulator 

One of the major advantages to the Contiki operating system for sensor software 

developers is the inclusion of the Cooja simulator environment. Cooja is a feature-rich simulator 

which allows developers to virtually deploy an environment of motes and gather a host of 

metrics about each one. Additionally, Cooja is capable of emulating several hardware platforms 

that Contiki could be compiled for. Better yet, it can also simulate a wireless radio medium, 

enabling developers to debug their applications and behave how they would function in a real-

world scenario. Perhaps most importantly for a project such as this, it is bundled with Instant 

Contiki and is completely free of charge. For these reasons, all debugging and experimentation 
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for this project occurred in the Cooja simulator. Theoretically all results could be duplicated on 

physical hardware, but due to time constraints could not be performed during the course of this 

project 

 Cooja enables the user to have control over a few parameters for the simulation 

environment. To account for interference and packet loss, one can modify the quality of the radio 

medium and even adjust, on a mote-by-mote basis, the probability with which that mote will 

successfully send or receive a packet. Cooja also allows for a maximum mote startup delay to be 

set along with a random seed. These parameters are used to calculate a random amount of time 

that it will take each mote to complete its boot sequence and begin executing its program. This 

accounts for the time that would be taken to connect each mote to a source of power. If all the 

motes are being powered by AA batteries, the odds of them all being inserted by a human being 

and booting at the same exact instant are slim. 

To ease the development of some operating system components, like WPI-MAC, this can 

be disabled so that all motes begin executing at the same exact moment in time. The settings 

used for the development and testing of WPI-MAC are explained in greater detail later in this 

report.  
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3. Implementation 

The primary accomplishment of this investigation was the development of WPI-MAC, an 

RDC driver for Contiki. This process presented an interesting set of challenges but also yielded a 

deep understanding of the Contiki operating system. Perhaps the greatest hurdle in developing a 

new RDC driver was gaining familiarity with the organization of the various networking 

modules present in Contiki. The published documentation for Contiki is still in its infancy and 

often fails to reflect the most current release of the operating system. The networking modules in 

particular have changed drastically in the past few minor releases of Contiki, yet fail to be 

described in the documentation. Fortunately, because Contiki is an open source project, one can 

search through the source tree in order to answer questions that the documentation cannot. 

To aid in development, Contiki includes a nullrdc driver, which is an RDC driver 

containing everything required to compile the networking stack and nothing more. This RDC 

driver actually does not perform any duty cycling and simply leaves the radio powered on at all 

times. It provides the scaffolding necessary to build a new driver by providing templates for the 

absolutely crucial methods that an RDC driver is expected to provide. These methods are utilized 

by the operating system and executed in response to specific events. The most significant of 

these events are triggered by system initialization, requests to power the radio down or turn it 

back on, requests to send a packet, and the radio receiving a packet. 

WPI-MAC began as a copy of the nullrdc driver and was developed from there. The most 

important aspect of this driver was the rigid and precise time events that distinguish Crankshaft. 

In Crankshaft, no node is ever permitted to transmit outside the bounds of its respective time slot. 

Therefore it is imperative that each node in the network transitions to a new slot at the exact 

same time. Contiki provides a handful of timer mechanisms, such as etimer and ctimer, which 
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can be preempted by other system events. Fortunately, the rtimer construct was recently added. 

This new mechanism behaves like ctimer but is given precedence above all other components in 

the system. Namely, when rtimer expires, its resulting callback method will preempt any other 

running process [10]. 

The strategy with which rtimer is employed in WPI-MAC is straightforward: the timer is 

used to signal the start of each transmission slot. When the timer expires, it begins executing the 

advance_slot method. This method is responsible for scheduling the timer to begin again, 

indicating the start of the next successive slot. Additionally, this method decides what the node 

needs to accomplish during the time slot based on its hardware address and the identification 

number of the current slot. This method is responsible for switching the wireless transceiver on 

or off depending on the context. For example, the current slot may be the broadcast slot and the 

node has no packets to send, but because it is the broadcast slot, the transceiver still needs to be 

powered. Therefore this method will invoke the radio’s on method if it is not already active. If it 

is the case that the node must use this slot to transmit a packet, then in this scenario, the method 

also serves as a dispatch mechanism. This is achieved by checking WPI-MAC’s built-in queuing 

system for any pending outbound packets. The queuing system is implemented as a first-in-first-

out linked list which is used to retain entire packets until they can be transmitted at an 

appropriate later time. The majority of the queue manipulation occurs in the send_packet and 

real_send methods. 

Admittedly, the selection of the transmission window duration for this project was 

arbitrary. It was intentionally set to be longer than necessary to help ensure that the protocol was 

performing in accordance with the Crankshaft specification. While the protocol works as 
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intended, as shown later, it does suffer from high latencies and unnecessary idle listening that 

could likely be reduced by adjusting this parameter. 

The send_packet method is one that all Contiki RDC drivers must include. It is invoked 

by higher layers of the Contiki networking stack wishing to send a packet to the radio, and 

eventually, transmit to another node. The WPI-MAC variant provides scheduling for the 

protocol. When send_packet is called, the method is provided with a pointer to the outbound 

packet header and a callback method to be executed after attempting to send the packet. The 

initial phase of send_packet allocates a queuebuf structure to house the header and payload of the 

outbound packet. The contents of the packet are then encapsulated inside a WPI-MAC-specific 

queue structure, and placed at the end of the appropriate queue. WPI-MAC maintains a global 

array of these queues, each representing the collection of packets destined to be transmitted 

during a specific slot. For example, the queue located at position zero in the array of queues 

contains a linked list of the packets that need to be transmitted during the broadcast slot. 

The real_send method is where the actual transmission of packets occurs. This is not 

registered with the operating system like some of the other methods, but rather the method is 

used internally by WPI-MAC’s scheduling system. When a new slot begins and advance_slot 

determines that there is a pending outbound packet for the current slot, it invokes real_send. The 

primary function of real_send is to copy the outbound packet from the WPI-MAC queue back to 

the radio and attempt to transmit it over the radio medium. Before this can occur, the node must 

win the contention period. Each time slot is divided into four relatively short contention 

windows, followed by a longer message exchange window. As described previously, the node 

will randomly choose one of these four contention windows beginning the transmission of the 
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filler packet. This differs from the original Crankshaft which employs a weighted probability 

protocol called Sift to choose a contention window. 

Four contention windows were chosen in order to provide a reasonably low rate of 

collision without negatively impacting latency too profoundly, given the number of transmission 

slots. The goal is to be the node that begins transmitting the soonest. If a node is attempting to 

send during the current slot and hears another node transmitting its filler packet, it knows it has 

lost the contention window and forfeits the message exchange window. In this scenario, the 

packet’s callback method is invoked including its status, indicating that the packet could not be 

transmitted due to congestion. If multiple nodes attempt to seize the same contention window, 

they will interfere with each other and no nodes will have access to the message exchange 

window; this is the worst case scenario. When this occurs, each node will report a failure when 

calling its packet’s callback method. Optimally, one node will transmit its filler packet 

Parameter Value 

Transmission Slots 12 

Broadcast Slots 1 

Unicast Slots 11 

Transmission Slot Duration 15 ms 

Total Period Duration 180 ms 

Contention Windows 4 

Contention Window Duration 2 ms 

Message Exchange Window 7 ms 

Table 3.1 WPI-MAC Parameter Specification 
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uninterrupted and have exclusive access to the message exchange window. During that time, it 

will proceed to transmit the original packet over the radio medium. Theoretically this attempt 

should succeed due to the privilege that the node has earned to occupy the message exchange 

window. Regardless of what transpires, the packet’s callback method is invoked along with its 

resultant status. 

Once the packet has been transmitted, the sender does not wait to receive a positive 

acknowledgement (ACK) from the recipient. Due to the inclusion of the sender contention 

mechanism and lack of receiver collisions offered by the Crankshaft model, it was decided that 

ACKs would be superfluous and only serve to increase latency overall. Ultimately, the real_send 

method is responsible for removing the packet from the internal queue collection in order to 

avoid accidental retransmission. 

For quick reference, Table 3.1 has been included to detail the most important parameters 

related to WPI-MAC. It is worth noting that these parameters are not hard-coded into the driver 

source code, but rather symbolically defined as preprocessor directives. Modifying one of these 

symbols and recompiling Contiki will cause the updated value to take effect. 
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4. Methodology 

Using the TinyOS version developed by Bates & Keating as inspiration, this project re-

implemented the Crankshaft MAC protocol without ACKs for the Contiki operating system. Due 

to the more logical segmentation of media access control logic in Contiki, this implementation 

was realized as a radio duty cycling driver. This RDC driver was compiled into Contiki as a Sky 

mote firmware, which could then be flashed onto a virtual device inside the Cooja simulator. 

4.1. Simulation Environment 

As previously mentioned, all experimentation was conducted in the Cooja simulator. The 

version used was the one bundled with Instant Contiki 2.6. The Instant Contiki image was run on 

a virtual machine provided by Oracle’s VirtualBox 4.2 hypervisor. The host machine was 

running the 64-bit edition of Windows 8 Pro powered by an Intel Core i7-3770K. The virtual 

machine was allocated 3 GBs of RAM and two hyper-threaded CPU cores clocked at 3.5 GHz, 

for a total of four logical processor cores. No modifications were made to the Instant Contiki 

image and no operating system updates were applied to the bundled installation of Ubuntu. 

The Cooja settings were left at their default values. For every simulation, the Unit Disk 

Graph Medium was selected as the radio medium with a mote startup delay of 0ms. This was 

done to ensure that all motes would start with a synchronized clock, which is important because 

at present, WPI-MAC does not include a mechanism to prevent clock drift. Each simulation 

consisted of 11 Sky motes all located within radio range of each other. As motes are placed about 

the simulation environment, Cooja provides feedback about the probability that each node has of 

successfully transmitting and receiving. All motes were placed within an area no greater than one 

square meter and were indicated by Cooja to have a 100% change of successfully sending and 

receiving data to all other motes in the simulation. The only aspect of the Sky platform that was 
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modified was the active RDC driver depending on the experiment. All simulations were allowed 

to run for 10 minutes of simulated time, which was often less than the wall clock duration. To 

facilitate easier replication, the firmware used on the virtual motes were only slightly modified 

versions of the sample programs that come bundled with Contiki. The only change made to the 

sample code was the inclusion of timestamps on the sending and receiving of packets, which was 

done simply to make delay easier to calculate. In order to measure power consumption, the 

project leveraged the tools included in Cooja to produce statistics regarding how much time the 

mote radios spent in each state.  

4.2. Tested MAC Protocols 

In order to gauge how the reimplementation of Crankshaft (WPI-MAC) performed, it was 

benchmarked against the two most popular RDC drivers in Contiki: ContikiMAC and X-MAC. 

4.2.1. WPI-MAC 

This project resulted in the development of a new synchronous MAC protocol based on 

Crankshaft, tentatively named WPI-MAC, which was implemented as an RDC driver in the 

Contiki operating system. The code left behind by Bates & Keating (which includes an 

implementation of Crankshaft) was used as inspiration for this version. However, their drivers 

were written in nesC for the TinyOS environment and needed to be adapted to work with 

Contiki. The Crankshaft protocol gets its name from an internal combustion engine, comparing 

the fixed wireless transmission slots that it gives to its receivers to the fixed offset between the 

start of the rotation of a crankshaft and the moment that a piston fires. In Crankshaft, time is 

divided into frames, which each can be thought of as a fixed period of time. Within every frame, 

there are a fixed number of slots which are intended to be used as listening windows. Each slot is 

either a broadcast slot or a unicast slot. For broadcast slots, all nodes in the neighborhood will 
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wake up to receive a broadcast message, regardless of whether or not there is one to be 

transmitted. Conversely, a unicast slot is a period of time assigned to one specific node (by 

hardware address) in which that node stays on to receive packets from neighboring sensors. 

Within each slot, there is a brief contention window, followed by a much longer message 

exchange window. When a sender wishes to send to another node, it must first “win” the 

contention window in that specific node’s slot, and then send its message during the message 

exchange window [11]. In an effort to reduce power consumption, nodes that are scheduled to 

wake up in order to listen in WPI-MAC do not do so until after the contention window has 

passed. As one would imagine, this protocol depends heavily on each node in the neighborhood 

knowing the others’ schedule and having a synchronized clock mechanism. For the purposes of 

this project, schedule synchronization and node initialization were assumed to have successfully 

taken place ahead of time. Additionally, nodes will not enter or leave the neighborhood once the 

simulation has begun.  

While Crankshaft served as the basis for the new protocol, some minor modifications 

were made. The new protocol does not adopt the Sift weighted-probability contention window 

mechanism found in the original Crankshaft. In WPI-MAC, instead there are four small 

contention windows which motes select with a random number generator. To increase 

randomness, no truncation or ceiling functions were used. Instead the domain of the random 

number generator was split into regions that corresponded to the contention slots. In WPI-MAC, 

there are twelve transmission slots per period: one broadcast slot, followed by eleven unicast 

receiving slots. This is to accommodate the simulation environment, in which there will be 

eleven virtual motes: a base station and ten clients. Lastly in terms of assumptions and 

modifications, WPI-MAC will only be concerned with single-hop environments. Requiring 
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nodes to keep track of scheduling for multiple neighborhoods could become rather memory 

intensive. Furthermore, the complexity involved with implementing a multi-hop protocol is 

beyond the scope of this project. 

4.2.2. ContikiMAC and X-MAC 

Currently, ContikiMAC and X-MAC are the two most popular RDC drivers in Contiki. 

Both drivers perform relatively well and accomplish the goal of keeping their radios off most of 

the time, but perhaps they are too similar to one another. Both of them are asynchronous 

protocols built around the idea of low power listening. Low power listening is a mechanism that 

can be used to detect if there is radio traffic within range of a transceiver without drawing too 

much power. This essentially relies upon the radio’s ability to provide a Received Signal 

Strength Indicator (RSSI), which should be significantly higher during times of radio activity. 

The fundamental difference between ContikiMAC and X-MAC is that ContikiMAC is 

sender-initiated while X-MAC is receiver-initiated. In ContikiMAC, when a node wants to send 

a packet, it begins transmitting that packet repeatedly until it receives an acknowledgement from 

another node (or some timeout condition is met). This acknowledgement indicates that the packet 

has been successful received by the other node and allows the sender to go back to sleep [2]. 

Conversely, nodes wishing to send a packet using X-MAC are not permitted to send a packet 

until knowing that there is another node awake and ready to receive the packet. This is 

accomplished through the use of strobes which are essentially just short preambles. A sender will 

start sending strobes repeatedly until it receives an acknowledgement from another node [8]. 

This allows the sender to transmit its packet over the radio medium knowing that there is an 

extremely good chance of another node being awake to receive it. Upon the completion of 

sending, the sender goes back to sleep. 
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These protocols are regarded as the two best available for Contiki by the Contiki 

community of developers. Therefore they make excellent choices for evaluating the performance 

of a new protocol. 

4.3. Benchmarking Traffic Patterns 

This investigation uses three different traffic patterns that well represent standard 

applications of wireless sensor networks. It is important to note that across all of these tests, the 

sample packets used were very small and not large enough to cause the packet to be separated 

into multiple frames. 

4.3.1. Broadcast 

Broadcast traffic is defined as one node in the network transmitting a packet intended to 

be received by all nodes in the network. This project used a modified version of the broadcast 

example program found in the IPv6 samples directory in the Contiki source tree. The sample was 

modified so that broadcasts were initiated once per second and only sent by the base station. The 

payload of these broadcast packets simply contain the number 4, represented by a single 

unsigned 8-bit integer. Thus the payload size for the broadcast packet is a single byte. By default, 

the sample includes timestamps for when a node sends a packet and when it is received by the 

other nodes. The difference between these two timestamps is calculated for each packet and then 

averaged over the receiving nodes to determine the average latency for a given protocol.  

4.3.2. Local Gossip/Unicast Conversations 

Local gossip is defined here as multiple nodes in a network simultaneously having 

unicast conversations with one another. For the experimentation portion of this project, I was 

again able to leverage some of the included sample code to facilitate this test. The sample code 
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has each node randomly choose a conversation receiving partner (other than itself) for a unicast 

message, sent at a random time over a ten second interval. The payload of this message is a 10-

byte ASCII string. Being that each node is simultaneously executing this test, it is possible that, 

on occasion, multiple nodes will attempt to send to the same node. If anything, this is a more 

rigorous test of a protocol as it is a scenario that is likely to occur in a real-world application. 

4.3.3. Convergecast 

Convergecast is defined as having all nodes in a network send unicast transmissions to a 

single node. This node is often known as a base station or a sink. The test code used in this 

project mimics the way wireless sensors are typically employed. The base station periodically 

broadcasts a message to all the leaf nodes in the system once over a ten second period. At this 

point, all of the leaf nodes then attempt to transmit a unicast message back to the sink 

simultaneously, which is likely to be a source of contention amongst the leaf nodes. This 

message contains a 32-byte snapshot of the current values of all the motes sensors as well as 

some other data, such as the amount of time the node has been running. In an actual 

implementation, the base station might be connected to an Internet web server. When a user 

issues a request to the web server, the web server has the base station mote request the current 

status of all the other sensors in the network and report their findings back. The reported values 

are then served to the web server and back out over the Internet. 
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5. Results 

5.1. Broadcast 

 The broadcast test exposes a significant flaw in WPI-MAC: when all the traffic occurs 

during a single transmission window, the nodes encounter substantial idle listening. Idle listening 

is the wasteful condition that occurs when a wireless transceiver is fully powered and listening to 

a radio channel on which no activity is occurring. Figures 5.1-5.3 represent the output of Cooja’s 

PowerTracker tool. This tool provides a per-mote summary of the amount of time that the 

wireless transceivers were in a particular state. The ‘Radio on’ statistic expresses the percentage 

of the total simulation time that the mote spent with its wireless transceiver fully powered; this is 

inclusive of time spent sending transmitting or receiving data as well as idle listening. Similarly, 

the ‘Radio TX’ and ‘Radio RX’ represent the percentage of total simulation duration spent 

transmitting or receiving packets, respectively. The ‘Radio RX’ percentage includes any 

overhearing that may occur as it is simply a measure of the amount of time the transceiver spent 

receiving a packet, regardless of the packet’s intended recipient. For these tests, ‘Mote 1’ acted 

as the base station that was transmitting the broadcast messages; all other motes were receiving. 

As illustrated in 5.1 and 5.2, the asynchronous protocols are able to achieve low power-

on times for the receivers, but at the cost of a disproportionately high usage on the part of the 

sender. The results for X-MAC and ContikiMAC are extremely similar except X-MAC requires 

roughly four times the amount of power to accomplish the same task. The WPI-MAC results do 

not vary as drastically from sender to receiver.  
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Figures 5.4-5.6 are screenshots from Cooja’s timeline tool which are intended to provide 

a visual representation of the behavior of the wireless transceiver. Each row is numbered and 

represents a different mote. The grey lines indicate that the radio was powered on and idly 

listening to the medium, while blue and green marks respectively indicate the sending and 

receiving of packets. These screenshots are samples of what the timeline displayed during the 

transmission of a single broadcast packet. 

Figure 5.1: X-MAC Radio Duty Cycling Data – Broadcast Test 

Figure 5.2: ContikiMAC Duty Cycling Data – Broadcast Test Figure 5.3: WPI-MAC Duty Cycling Data – Broadcast Test 
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In order to more accurately evaluate the performance of these protocols, one must also 

consider the latency experienced by packets in the system. Table 5.1 shows the average latency 

for broadcast packets transmitted using each of the protocols. The latencies shown here do not 

account for delays due to retransmissions. Furthermore, they do not include the exchange of 

ACKs that may take place after the message has been successfully received. Shown below is 

simply an average measure between the time when the program submitted its packet to the MAC 

layer for transmission and the time in which that same packet was received by its intended target. 

 

Figure 5.4: WPI-MAC Cooja Timeline – Broadcast Test 

Figure 5.5: X-MAC Cooja Timeline – Broadcast Test 

Figure 5.6: ContikiMAC Cooja Timeline – Broadcast Test 

 ContikiMAC X-MAC WPI-MAC 

Latency (ms) 91 104 111 

Table 5.1: Average Latency by Protocol – Broadcast Test 
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While WPI-MAC did not perform as well as the asynchronous protocols in this test, the 

figures above help to illustrate how the protocol could be optimized for this scenario. The 

unutilized unicast transmission slots are the cause of the higher latency experienced by WPI-

MAC, but because they are so rigidly defined, they allow WPI-MAC to offer the most consistent 

latency measurements. Reducing the number of transmission slots in WPI-MAC would help 

reduce delay, but would also cause the motes to wake up more frequently, thus consuming more 

energy. This exemplifies the stereotypical tradeoff between energy and latency that exists in the 

world of MAC protocols 

5.2. Local Gossip 

The results of the local gossip test were fairly similar when it came to power 

consumption. Figures 5.7-5.9 below also illustrate the amount of time each protocol kept the 

transceiver in a particular power state during the test period. The Cooja PowerTracker highlights 

the mote with the highest level of power consumption in red, though due to internal rounding this 

may not be obvious. 

 
Figure 5.7: WPI-MAC Duty Cycling Data – Local Gossip Test 
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 Most notably, the duty cycling figures demonstrate that ContikiMAC is exceptional at 

keeping power consumption low for this type of traffic. Meanwhile, X-MAC yielded rather 

sporadic results and was only marginally more conservative than WPI-MAC on the whole. WPI-

MAC again offers more consistent and uniform performance due to the rigid timing of the 

Crankshaft model. Below, figures 5.10-5.12 depict interesting moments from the testing of each 

protocol. 

 

 

Figure 5.8: X-MAC Duty Cycling Data – Local Gossip Test Figure 5.9: ContikiMAC Duty Cycling Data – Local Gossip Test 

Figure 5.10: WPI-MAC Cooja Timeline – Local Gossip Test 

Figure 5.11: X-MAC Cooja Timeline – Local Gossip Test 
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Figure 5.10 depicts nodes 11 and 9 vying for contention over node 5’s unicast receiving 

window. Node 11 starts transmitting sooner than 9 does, causing 9 to back off and not attempt to 

send. As a result, 9 is awake to overhear the packet bound for 5, but this packet is discarded by 9 

as it is not the intended recipient. Figure 5.11 illustrates how X-MAC comes away with such 

high radio utilization. The radio medium becomes extremely congested by X-MAC’s excessive 

transmission of strobe packets and dependence on ACKs. ContikiMAC’s early ACK and fast-

sleep optimizations are cause for a much calmer state of affairs in Figure 5.12. However, 

ContikiMAC does experience some packet collisions (represented by the red blocks) when two 

nodes attempt to transmit concurrently. Once again, WPI-MAC consumes more energy overall 

than the other two protocols. But how does it compare in terms of latency? The table below 

shows the average latency of the three protocols during this test. 

Unlike the previous test, ContikiMAC is actually the clear winner for this category of 

traffic. Not only does it use significantly less energy than the other two, it also experiences the 

lowest latencies of the group. While WPI-MAC did not fare too well in terms of power 

consumption, it could be a decent alternative to X-MAC if the application was highly latency 

Figure 5.12: ContikiMAC Cooja Timeline – Local Gossip Test 

 ContikiMAC X-MAC WPI-MAC 

Latency (ms) 111 423 134 

Table 5.2: Average Latency by Protocol – Local Gossip Test 
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dependent. In fact, X-MAC does not perform well at all under these conditions. This is likely 

attributed to collisions that occur when multiple unicast senders are transmitting their entire 

packets over the radio medium while multiple receivers are simultaneously attempting to 

announce their availability to receive. Such an occurrence would cause X-MAC to attempt the 

transmission again later, when it would likely encounters the same problem at least a few times 

before successfully sending a packet. 

5.3. Convergecast 

The results for the convergecast tests bear slight resemblance to the local gossip results. 

They both share the common trait of attempting to, at times, transmit multiple unicast messages 

to a single node. Once more, Figures 5.13-5.15 below depict the amount of time that each 

protocol kept its motes’ transceivers in a powered state. The red highlights are simply intended to 

draw attention to the mote with the highest radio usage. 

 
Figure 5.13: WPI-MAC Duty Cycling Data – Convergecast Test 
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 The nodes were instructed to send a small packet back to the base station once every 10 

seconds. As in prior tests, node 1 served as the base station. As per usual, ContikiMAC managed 

to achieve the lowest energy consumption of the group, while WPI-MAC’s utilization was higher 

but more consistent. However, X-MAC faired significantly better in this trial than it did during 

the local gossip test. This behavior is to be expected, as only one unicast receiver is attempting to 

initiate a transmission, unlike the local gossip trial. 

 

Figure 5.14: X-MAC Duty Cycling Data – Convergecast Test Figure 5.15: ContikiMAC Duty Cycling Data – Convergecast Test 

Figure 5.16: WPI-MAC Cooja Timeline – Convergecast Test 
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Figures 5.16 - 5.18 reflect interesting moments from the trials. The WPI-MAC base station is 

unfortunately limited to receiving one unicast message per period. Figure 5.16 illustrates this gap 

and helps to explain the increased latency exhibited in Table 5.3. X-MAC again proves it can 

clutter the radio medium for a long time when faced with multiple unicast transmissions. The 

frequent need for retransmissions attributes to the poor delay experienced by this protocol. 

Lastly, ContikiMAC demonstrates that even by waking its motes up frequently, it can conserve 

more energy by being able to swiftly power them off again. 

Not surprisingly, ContikiMAC is again the clear victor in this test. However, WPI-MAC 

continues to offer lower latencies than X-MAC but at twice the energy cost. At this point it is 

Figure 5.17: X-MAC Cooja Timeline – Convergecast Test 

Figure 5.18: ContikiMAC Cooja Timeline – Convergecast Test 

 ContikiMAC X-MAC WPI-MAC 

Latency (ms) 131 274 173 

Table 5.3: Average Latency by Protocol – Convergecast Test 

 



34 

 

clear that X-MAC does not perform very well under these conditions and should be avoided if 

latency is a factor. 
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6. Conclusions 

 Ultimately, there is still plenty of room for growth and additional research in the field of 

wireless sensor networks. While WPI-MAC does not perform better than ContikiMAC in any 

scenario tested during this investigation, it does, at times, fare better than X-MAC in regard to 

latency. However, the tests performed in this experiment do not adequately exercise scenarios in 

which WPI-MAC would be advantageous. It would be interesting to see how WPI-MAC 

performed with the inclusion of the proposed changes in the follow chapter.  

 In the case of wireless sensor networks, choosing a MAC protocol will almost always be 

dependent on the application of that particular system. Of course, protocols can always be 

adapted and tuned to perform better in certain situations. Though perhaps the community as a 

whole can benefit from the existence of several varied and specialized protocols. 
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7. Future Work 

7.1.1. Support Multi-hop Traffic 

Although not exercised by the preliminary tests conducted in this investigation, one of the 

major benefits to choosing ContikiMAC is its ability to relay packets across multiple sensor 

neighborhoods. In order to be viewed as a more serious contender to ContikiMAC, WPI-MAC 

would also have to support this same multi-hop functionality. In ContikiMAC, nodes function as 

sleepy routers, which are capable of waking up to relay a packet to another neighborhood and 

then quickly return to sleep. Duplicating this behavior in WPI-MAC would be challenging due to 

the need for multi-clock synchronization. 

7.1.2. Fast Sleep Optimization 

Presently, the transmission slot length in this implementation of WPI-MAC is too long. 

Reducing the duration of the slot could help combat excessive idle listening. As soon as a 

recipient node has successfully received, there is no need for it to leave its transceiver powered. 

In the current version of the driver, the node remains awake until the next transmission slot 

begins (which subsequently triggers the transceiver’s shutdown method). 

Additionally, the current behavior for a unicast or broadcast receiver is to wake up after 

the contention windows. If the receiver(s) woke up at the start of the contention windows, they 

could immediately go back to sleep if they detect no filler packet being transmitted before the 

message exchange window. This change would also have no impact on delay, but would help to 

conserve energy through the drastic minimization of idle listening. 
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7.1.3. Dynamically Accommodate Varying Population Size 

In its current state, WPI-MAC does not support nodes joining or leaving after the initial 

setup period. This is another area in which ContikiMAC and X-MAC currently outperform it as 

they are significantly more flexible in this regard. This would be accomplished through the use 

of control packets that would be used to inform new nodes of the current state of the network. 

7.1.4. Selective Omission of Broadcast Slot 

It is possible that WPI-MAC could reduce a portion of the energy wasted to over-hearing 

by allowing for the broadcast slot to be omitted during certain cycles. The protocol would 

declare ahead of time how frequently there would be a broadcast window. For example, by 

including a broadcast window only once every ten periods, this would help to keep more 

transceivers off for longer durations of time. However, in situations that experience heavy 

broadcast traffic, this could further increase the delay of such traffic types. Although in scenarios 

with low volumes of broadcast traffic, removing an entire transmission slot could slightly reduce 

latency. 

7.1.5. Additional Testing With Larger Packets 

The programs used to test these protocols all used very short packet payloads, none of 

them larger than 32 bytes. As a result, some of the protocols may behave differently when given 

larger packets to transmit. It is predicted that WPI-MAC would suffer higher delays than the 

ContikiMAC, which includes a mechanism for bulk transfer. This highly specific optimization 

allows a node to send multiple packets in rapid succession, something that currently cannot be 

achieved with WPI-MAC. 

  



38 

 

References 

 

[1]  Crossbow Technology, Inc., "TelosB Mote Platform Data Sheet," [Online]. Available: 

http://bullseye.xbow.com:81/Products/Product_pdf_files/Wireless_pdf/TelosB_Datasheet.p

df. 

[2]  A. Dunkels, "The ContikiMAC Radio Duty Cycling Protocol," SICS Technical Report, vol. 

T2011, no. 13, pp. 1-11, 2011.  

[3]  A. Dunkels, B. Gronvall and T. Voigt, "Contiki - a Lightweight and Flexible Operating 

System for Tiny Networked Sensors," in Proceedings of the First IEEE Workshop on 

Embedded Networked Sensors (Emnets-I), Tampa, Florida, USA, 2004.  

[4]  B. Bates, A. Keating and R. Kinicki, "Energy Analysis of Four Wireless Sensor Network 

MAC Protocols," Worcester Polytechnic Institute, pp. 1-6, 2009.  

[5]  B. Bates, A. Keating and R. Kinicki, "Energy analysis of four wireless sensor network 

MAC protocols," in 6th International Symposium on Wireless and Pervasive Computing 

(ISWPC), Hong Kong, 2011.  

[6]  The Contiki Project, "Contiki: The Open Source Operating System For The Internet Of 

Things," July 2012. [Online]. Available: http://www.contiki-os.org/. [Accessed 11 

December 2012]. 

[7]  A. Dunkels, "Change MAC or Radio Duty Cycling Protocols," 27 November 2011. 

[Online]. Available: 

http://www.sics.se/contiki/wiki/index.php/Change_MAC_or_Radio_Duty_Cycling_Protoc

ols. [Accessed 17 September 2012]. 



39 

 

[8]  S. Zacharias and T. Newe, "Competition at the Wireless Sensor Network MAC Layer: Low 

Power Probing interfering with X-MAC," Journal of Physics: Conference Series, vol. XVI, 

no. 307, pp. 1-6, 2011.  

[9]  A. Dunkels, "Radio duty cycling: The Contiki X-MAC," December 2012. [Online]. 

Available: https://github.com/contiki-os/contiki/wiki/Radio-duty-cycling#wiki-

The_Contiki_XMAC. [Accessed 3 January 2013]. 

[10]  The Contiki Project, "Contiki 2.6 Documentation," [Online]. Available: 

http://contiki.sourceforge.net/docs/2.6/a01787.html. 

[11]  G. P. Halkes and K. G. Langendoen, "Crankshaft: An Energy-Efficient MAC-Protocol for 

Dense Wireless Sensor Networks," Lecture Notes in Computer Science, vol. 4373, pp. 228-

244, 2007.  

[12]  S. Pratapa, "Improving latency in Crankshaft - An energy-aware MAC protocol for 

Wireless Sensor Networks," Worcester Polytechnic Institute, 2009.  

 

 


